Acta Optica Sinica, Volume. 40, Issue 15, 1528003(2020)

Domestic Multispectral Image Classification Based on Multilayer Perception Convolutional Neural Network

Ruifei Zhu1,2, Jingyu Ma1, Zhuqiang Li1、*, Dong Wang1,2, Yuan An1,2, Xing Zhong1,2, Fang Gao1, and Xiangyu Meng3
Author Affiliations
  • 1Jilin Key Laboratory of Satellite Remote Sensing Application Technology, Chang Guang Satellite Technology Co., Ltd., Changchun, Jilin 130012, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 3Jilin Institute of Land Survey & Planning, Changchun, Jilin 130061, China;
  • show less
    References(27)

    [1] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 20, 689-707(2016).

    [2] Goetz A F H. Three decades of hyperspectral remote sensing of the earth: a personal view[J]. Remote Sensing of Environment, 113, S5-S16(2009).

    [3] Xu G H, Liu Q H, Chen L F et al. Remote sensing for China's sustainable development: opportunities and challenges[J]. Journal of Remote Sensing, 20, 679-688(2016).

    [4] Zheng Y, Wu B F, Zhang M. Estimating the above ground biomass of winter wheat using the Sentinel-2 data[J]. Journal of Remote Sensing, 21, 318-328(2017).

    [5] Li X W, Shi H, Zhang Y et al. Cyanobacteria blooms monitoring in Taihu lake based on the Sentinel-2A satellite of European space agency[J]. Environmental Monitoring in China, 34, 169-176(2018).

    [6] Samaniego L, Bardossy A, Schulz K. Supervised classification of remotely sensed imagery using a modified k-NN technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 2112-2125(2008).

    [7] Cui B D. Remote sensing image classification based on SVM classifier[J]. Computer Engineering and Applications, 47, 189-191(2011).

    [8] Xie D F, Zhang J S, Pan Y Z et al. Fusion of MODIS and Landsat 8 images to generate high spatial-temporal resolution data for mapping autumn crop distribution[J]. Journal of Remote Sensing, 19, 791-805(2015).

    [9] Lin W P, Wang C Y, Chu D P et al. Extraction of fall crop types based on spectral analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 22, 128-132(2006).

    [10] Hu Y, Liu L Y, Peter C et al. Landsat time-series land cover mapping with spectral signature extension method[J]. Journal of Remote Sensing, 19, 648-656(2015).

    [11] Yang B, Cao C X, Xing Y et al. Automatic classification of remote sensing images using multiple classifier systems[J]. Mathematical Problems in Engineering, 1-10(2015).

    [12] Yu P X, Zhou X, Liu S H et al. Feature extraction and recognition of erosion gully based on remote sensing image in the black soil region in Northeast China[J]. Journal of Remote Sensing, 22, 611-620(2018).

    [14] Paoletti M E, Haut J M, Plaza J et al. A new deep convolutional neural network for fast hyperspectral image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 120-147(2018).

    [15] Zhou W X, Newsam S, Li C M et al. PatternNet: a benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 197-209(2018).

    [16] Kan X, Zhang Y H, Cao T et al. Snow cover recognition for Qinghai-Tibetan Plateau using deep learning and multispectral remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 45, 1210-1221(2016).

    [17] Pan B, Shi Z W, Xu X. MugNet: deep learning for hyperspectral image classification using limited samples[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 108-119(2018).

    [18] Zhang Z X, Wang X, Wen Q K et al. Research progress of remote sensing application in land resources[J]. Journal of Remote Sensing, 20, 1243-1258(2016).

    [19] Ke G L, Meng Q, Finley T et al. LightGBM: a highly efficient gradient boosting decision tree. [C]//Advances in Neural Information Processing Systems 30, December 4-9, 2017, Long Beach, CA, USA. New York: Curran Associate(2017).

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [22] Gong P, Wang J, Yu L et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 34, 2607-2654(2013).

    [23] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and Stochastic optimization[J]. The Journal of Machine Learning Research, 12, 257-269(2011).

    [24] Zhong P, Wang R S. Learning conditional random fields for classification of hyperspectral images[J]. IEEE Transactions on Image Processing, 19, 1890-1907(2010).

    [25] Zhao J, Zhong Y F, Zhang L P. Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 2440-2452(2015).

    [26] Xia M, Cao G, Wang G Y et al. Remote sensing image classification based on deep learning and conditional random fields[J]. Journal of Image and Graphics, 22, 1289-1301(2017).

    [27] Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with Gaussian edge potentials. [C]//Advances in Neural Information Processing Systems 24, December 3-6, 2011, Granada, Spain. New York: Curran Associate(2011).

    Tools

    Get Citation

    Copy Citation Text

    Ruifei Zhu, Jingyu Ma, Zhuqiang Li, Dong Wang, Yuan An, Xing Zhong, Fang Gao, Xiangyu Meng. Domestic Multispectral Image Classification Based on Multilayer Perception Convolutional Neural Network[J]. Acta Optica Sinica, 2020, 40(15): 1528003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 1, 2020

    Accepted: May. 6, 2020

    Published Online: Aug. 5, 2020

    The Author Email: Li Zhuqiang (skybelongtous@foxmail.com)

    DOI:10.3788/AOS202040.1528003

    Topics