Laser & Optoelectronics Progress, Volume. 55, Issue 9, 91401(2018)

Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning

Wan Le1, Wang Siqi2, Zhang Xiaowei1, and Jiang Yehua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(30)

    [1] [1] Murr L E, Martinez E, Amato K N, et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science[J]. Journal of Materials Research and Technology, 2012, 1(1): 42-54.

    [2] [2] Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

    [3] [3] Stamp R, Fox P, O′Neill W, et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(9): 1839-1848.

    [4] [4] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13): 1459-1468.

    [5] [5] Wang X, Wang D S, Gao X S, et al. Research status and development in laser additive manufacturing of light alloy components[J]. Applied Laser, 2016(4): 478-483.

    [6] [6] Yi H, Bai P K, Liu B, et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Casting Forging Welding, 2010, 39(1): 140-144.

    [7] [7] Gu D, Hagedorn Y, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

    [8] [8] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

    [9] [9] Li H X, Huang B Y, Sun F, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(2): 209-212.

    [10] [10] Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1025-1035.

    [11] [11] Heinl P, Müller L, Korner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 2008, 4(5): 1536-1544.

    [12] [12] Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672: 643-652.

    [13] [13] Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34 (5): 740-753.

    [14] [14] Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1/2): 163-166.

    [15] [15] Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

    [16] [16] Yang Y Q, Wang D, Wu W H, et al. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.

    [21] [21] Wang D, Yang Y Q, Huang Y L, et al. Density improvement of metal parts directly fabricated via selective laser melting[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(6): 107-111.

    [22] [22] Yang X W, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(3): 0303004.

    [23] [23] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering, 2006, 428(1): 148-158.

    [24] [24] Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti-6Al-4V based on powder characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 0702004.

    [25] [25] Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.

    [26] [26] Yan A R, Yang T T, Wang Z Y, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 2016, 43(2): 0203004.

    [28] [28] Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders[J]. Physics Procedia, 2011, 12(1): 264-270.

    [29] [29] Evren Y, Jan D, Kruth J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.

    [30] [30] Nersisyan H H, Yoo B U, Kim Y M, et al. Gas-phase supported rapid manufacturing of Ti-6Al-4V alloy spherical particles for 3D printing[J]. Chemical Engineering Journal, 2016, 304: 232-240.

    Tools

    Get Citation

    Copy Citation Text

    Wan Le, Wang Siqi, Zhang Xiaowei, Jiang Yehua. Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Mar. 7, 2018

    Accepted: --

    Published Online: Sep. 8, 2018

    The Author Email:

    DOI:10.3788/lop55.091401

    Topics