Journal of Quantum Optics, Volume. 30, Issue 4, 40201(2024)
Reducing Coating Thermal Noise by Using Khalili Etalon and High-order Mode
[1] [1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. DOI: 10.1103/PhysRevLett.116.061102.
[2] [2] THE L S C, AASI J, ABBOTT B P, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 2015, 32(7): 074001. DOI: 10.1088/0264-9381/32/7/074001.
[3] [3] ACERNESE F, AGATHOS M, AGATSUMA K, et al. Advanced Virgo: a second-generation interferometric gravitational wave detector[J]. Classical and Quantum Gravity, 2015, 32(2): 024001. DOI: 10.1088/0264-9381/32/2/024001.
[4] [4] PUNTURO M, ABERNATHY M, ACERNESE F, et al. The third generation of gravitational wave observatories and their science reach[J]. Classical and Quantum Gravity, 2010, 27(8): 084007. DOI: 10.1088/0264-9381/27/8/084007.
[5] [5] PUNTURO M, ABERNATHY M, ACERNESE F, et al. The Einstein Telescope: a third-generation gravitational wave observatory[J]. Classical and Quantum Gravity, 2010, 27(19): 194002. DOI: 10.1088/0264-9381/27/19/194002.
[6] [6] MARTYNOV D V, HALL E D, ABBOTT B P, et al. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[J]. Physical Review D, 2016, 93(11): 112004. DOI: 10.1103/PhysRevD.93.112004.
[7] [7] BUONANNO A, CHEN Y. Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors[J]. Physical Review D, 2001, 64(4): 042006. DOI: 10.1103/PhysRevD.64.042006.
[8] [8] SCHNABEL R, BRITZGER M, BRCKNER F, et al. Building blocks for future detectors: Silicon test masses and 1 550 nm laser light[J]. Journal of Physics: Conference Series, 2010, 228(1): 012029. DOI: 10.1088/1742-6596/228/1/012029.
[9] [9] DE MARTIN JNIOR J, VALAPPIL S K N, MLLER S T, et al. Development of an ultrastable laser at 1 550 nm[J]. Journal of Physics: Conference Series, 2018, 975(1): 012069. DOI: 10.1088/1742-6596/975/1/012069.
[10] [10] SAKAKIBARA Y, AKUTSU T, CHEN D, et al. Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope[J]. Classical and Quantum Gravity, 2014, 31(22): 224003. DOI: 10.1088/0264-9381/31/22/224003.
[11] [11] CRAIG K, STEINLECHNER J, MURRAY P G, et al. Mirror coating solution for the cryogenic einstein telescope[J]. Phys Rev Lett, 2019, 122(23): 231102. DOI: 10.1103/PhysRevLett.122.231102.
[12] [12] GRANATA M, AMATO A, BALZARINI L, et al. Amorphous optical coatings of present gravitational-wave interferometers[J]. Classical and Quantum Gravity, 2020, 37(9): 095004. DOI: 10.1088/1361-6382/ab77e9.
[13] [13] VAJENTE G, YANG L, DAVENPORT A, et al. Low mechanical loss TiO2: GeO2 coatings for reduced thermal noise in gravitational wave interferometers[J]. Phys Rev Lett, 2021, 127(7): 071101. DOI: 10.1103/PhysRevLett.127.071101.
[14] [14] CELLA G, GIAZOTTO A. Coatingless, tunable finesse interferometer for gravitational wave detection[J]. Physical Review D, 2006, 74(4): 042001. DOI: 10.1103/PhysRevD.74.042001.
[15] [15] GOLER S, CUMPSTON J, MCKENZIE K, et al. Coating-free mirrors for high precision interferometric experiments[J]. Physical Review A, 2007, 76(5): 053810. DOI: 10.1103/PhysRevA.76.053810.
[16] [16] KHALILI F Y. Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors[J]. Physics Letters A, 2005, 334(1): 67‒72. DOI: 10.1016/j.physleta.2004.10.078.
[17] [17] MOURS B, TOURNEFIER E, VINET J Y. Thermal noise reduction in interferometric gravitational wave antennas: Using high order TEM modes[J]. Classical and Quantum Gravity, 2006, 23(20): 5777‒5784. DOI: 10.1088/0264-9381/23/20/001.
[18] [18] ALLOCCA A, GATTO A, TACCA M, et al. Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation[J]. Physical Review D, 2015, 92(10): 102002. DOI: 10.1103/PhysRevD.92.102002.
[19] [19] HONG T, YANG H, GUSTAFSON E K, et al. Brownian thermal noise in multilayer coated mirrors[J]. Physical Review D, 2013, 87(8): 082001. DOI: 10.1103/PhysRevD.87.082001.
[20] [20] CHELKOWSKI S, HILD S, FREISE A. Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors[J]. Physical Review D, 2009, 79(12): 122002. DOI: 10.1103/PhysRevD.79.122002.
[21] [21] GRANATA M, BUY C, WARD R, et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors[J]. Physical Review Letters, 2010, 105(23): 231102. DOI: 10.1103/PhysRevLett.105.231102.
[22] [22] VINET J Y. Thermal noise in advanced gravitational wave interferometric antennas: A comparison between arbitrary order Hermite and Laguerre Gaussian modes[J]. Physical Review D, 2010, 82(4): 042003. DOI: 10.1103/PhysRevD.82.042003.
[23] [23] CARBONE L, BOGAN C, FULDA P, et al. Generation of high-purity higher-order Laguerre-Gauss beams at high laser power[J]. Phys Rev Lett, 2013, 110(25): 251101. DOI: 10.1103/PhysRevLett.110.251101.
[24] [24] LUO R, LI L, CUI W, et al. Experimental study of diode pumped rubidium amplifier for single higher-order Laguerre-Gaussian modes[J]. Opt Express, 2016, 24(12): 13351. DOI: 10.1364/OE.24.013351.
[25] [25] AST S, DI PACE S, MILLO J, et al. Higher-order Hermite-Gauss modes for gravitational waves detection[J]. Physical Review D, 2021, 103(4): 042008. DOI: 10.1103/PhysRevD.103.042008.
[26] [26] SAULSON P R. Thermal noise in mechanical experiments[J]. Phys Rev D Part Fields, 1990, 42(8): 2437. DOI: 10.1103/Phys-RevD.42.2437.
[27] [27] GILLESPIE A, RAAB F. Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors[J]. Phys Rev D Part Fields, 1995, 52(2): 577. DOI: 10.1103/PhysRevD.52.577.
[28] [28] CALLEN H B, WELTON T A. Irreversibility and generalized noise[J]. Physical Review, 1951, 83(1): 34‒40. DOI: 10.1103/PhysRev.83.34.
[29] [29] LEVIN Y. Internal thermal noise in the LIGO test masses: A direct approach[J]. Physical Review D, 1998, 57(2): 659‒663. DOI: 10.1103/PhysRevD.57.659.
[30] [30] BONDU F, HELLO P, VINET J Y. Thermal noise in mirrors of interferometric gravitational wave antennas[J]. Physics Letters A, 1998, 246(3): 227‒236. DOI: 10.1016/S0375-9601(98)00450-2.
[31] [31] LIU Y T, THORNE K S. Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses[J]. Physical Review D, 2000, 62(12): 122002. DOI: 10.1103/PhysRevD.62.122002.
[32] [32] GREGORY M H, ANDRI M G, PETER R S, et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings[J]. Classical and Quantum Gravity, 2002, 19(5): 897‒917. DOI: 1088/0264-9381/19/5/305.
[33] [33] SOMIYA K, YAMAMOTO K. Coating thermal noise of a finite-size cylindrical mirror[J]. Physical Review D, 2009, 79(10): 102004. DOI: 10.1103/PhysRevD.79.102004.
[34] [34] SOMIYA K, GURKOVSKY A G, HEINERT D, et al. Reduction of coating thermal noise by using an etalon[J]. Physics Letters A, 2011, 375(11): 1363‒1374. DOI: 10.1016/j.physleta.2011.02.009.
[35] [35] BRAGINSKY V B, GORODETSKY M L, VYATCHANIN S P. Thermo-refractive noise in gravitational wave antennae[J]. Physics Letters A, 2000, 271(5): 303‒307. DOI: 10.1016/S0375-9601(00)00389-3.
Get Citation
Copy Citation Text
WANG Kai, ZHANG Yu-chi, GUO Qi, ZHENG Yao-hui, ZHANG Tian-cai. Reducing Coating Thermal Noise by Using Khalili Etalon and High-order Mode[J]. Journal of Quantum Optics, 2024, 30(4): 40201
Category:
Received: Mar. 15, 2023
Accepted: Feb. 26, 2025
Published Online: Feb. 26, 2025
The Author Email: ZHANG Yu-chi (yczhang@sxu.edu.cn)