Journal of Semiconductors, Volume. 41, Issue 1, 012701(2020)
Nano-sphere surface arrays based on GaAs solar cells
[1] T Kitatani, Y Yazawa, S Watahiki et al. Optimal growth procedure of GaInP/GaAs heterostructure for high-efficiency solar cells. Sol Energy Mater Sol Cells, 50, 221(1998).
[2] T Takamoto, M Yamaguchi, S Taylor et al. Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells. Sol Energy Mater Sol Cells, 58, 265(1999).
[3] I Garcia, B Rey-Stolle, C Galiana et al. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Appl Phys Lett, 94, 053509(2009).
[4] J H Zhao, A H Wang, M A Green et al. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett, 73, 1991(1998).
[5] M Tao, W D Zhou, H J Yang et al. Surface texturing by solution deposition for omnidirectional antireflection. Appl Phys Lett, 91, 081118(2007).
[6] V Y Yerokhov, R Hezel, M Lipinski et al. Cost-effective methods of texturing for silicon solar cells. Sol Energy Mater Sol Cells, 72, 291(2002).
[7] R Dewan, M Marinkovic, R Noriega et al. Light trapping in thin-film silicon solar cells with submicron surface texture. Opt Express, 17, 23058(2009).
[8] J Zhao, A Wang, P Altermatt et al. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl Phys Lett, 66, 3636(1995).
[9] M A Green. Two new efficient crystalline silicon light-trapping textures. Prog Photovolt Res Appl, 7, 317(1999).
[10] N D Lam, Y Kim, K Kim et al. Improved optical absorption and photocurrent of GaAs solar cells with hexagonal micro-hole array surface texturing. J Cryst Growth, 370, 244(2013).
[11] S Chattopadhyay, Y F Huang, Y J Jen et al. Anti-reflecting and photonic nanostructures. Mater Sci Eng R, 69, 1(2010).
[12] B Yan, J M Owens, C Jiang et al. High-efficiency amorphous silicon alloy based solar cells and modules. Proc MRS Symp, 862(2005).
[13] J Springer, A Poruba, L Müllerova et al. Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. J Appl Phys, 95, 1427(2004).
[14] E Yablonovitch, G D Cody. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Devices, 29, 300(1982).
[15] M A Green. Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Prog Photovolt Res Appl, 10, 235(2002).
[16] P Campbell, M A Green. Light trapping properties of pyramidally textured surfaces. J Appl Phys, 62, 243(1987).
[17] J N Munday, H A Atwater. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett, 11, 2195(2011).
[18] J Krc, G Cernivec, A Campa et al. Optical and electrical modeling of Cu(In, Ga)Se2 solar cells. Opt Quantum Electron, 38, 1115(2006).
[19] D Zhou, R Biswas. Photonic crystal enhanced light-trapping in thin film solar cells. J Appl Phys, 103, 093102(2008).
[20] T H Chang, P H Wu, S H Chen et al. Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt Express, 17, 6519(2009).
[21] C Sun, P Jiang, B Jiang. Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett, 92, 061112(2008).
[22] C K Huang, K W Sun, W Chang. Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure. Opt Express, 20, A85(2012).
[23] S Domınguez, O Garcıá, M Ezquer et al. Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells. Photonics Nanostruct: Fundam Appl, 10, 46(2012).
[24] M Tsai, P Tseng, H Chen et al. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays. Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications(2011).
[25] N Yamada, O N Kim, T Tokimitsu et al. Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells. Prog Photovolt Res Appl, 19, 134(2011).
[26] D E Aspnes, S M Kelso, R A Logan et al. Optical properties of Al
[27] A D Rakic, A B Djurišic, J M Elazar et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt, 37, 5271(1998).
[28] Y Mir, A Amine, M Bouabdellaoui et al. The window layers effect on the hardness improvement of space solar cells exposed to the 1 MeV electron irradiations. Opt Quantum Electron, 45, 1189(2013).
[29] N D Gupta, V Janyani. Optical and electrical simulation studies of light trapping in GaAs thin film solar cells using 2D photonic-crystal. J Nanoelectron Optoelectron, 11, 368(2016).
[30] X Wang, M Khan, J L Gray et al. Design of GaAs solar cells operating close to the Shockley-Queisser limit. IEEE J Photovolt, 3, 737(2013).
[31] R Biswas, C G Ding, I Puscasu et al. Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission. Phys Rev B, 74, 045107(2006).
[32] Z Y Li, L L Lin. Photonic band structures solved by a plane-wave-based transfer-matrix method. Phys Rev E, 67, 046607(2003).
[33]
[34] N Gupta, V Janyani. Design and optimization of photonic crystal diffraction grating based efficient light trapping structure for GaAs thin film solar cell. J Nanoelectron Optoelectron, 11, 407(2016).
[35] P Bermel, C Luo, L Zeng et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt Exp, 15, 16986(2007).
[36] N P Gupta, V Janyani. Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface. IEEE J Quantum Electron, 53, 1(2017).
Get Citation
Copy Citation Text
Yinsheng Peng, Shufeng Gong, Kai Liu, Minghai Yao. Nano-sphere surface arrays based on GaAs solar cells[J]. Journal of Semiconductors, 2020, 41(1): 012701
Category: Articles
Received: Sep. 19, 2019
Accepted: --
Published Online: Sep. 10, 2021
The Author Email: