APPLIED LASER, Volume. 42, Issue 5, 20(2022)
The Progress of High Entropy Alloys Coating Fabricated by Laser Cladding on Tool Steel
[1] [1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[2] [2] ZHAO B Z. The characteristics of modern tool innovation [J]. Tool Engineering, 2008, 42(10): 14-16.
[3] [3] KONG F X, ZHANG C M, ZHANG D Y. Wear oftool with TiAlN coating in high-speed milling of particle reinforced aluminum matrix composites[J]. Materials for Mechanical Engineering, 2009, 33(8): 81-83.
[4] [4] QI Z F, REN R M. Development of cutting tool materials at home and abroad[J]. Heat Treatment of Metals, 2008(1): 15-20.
[5] [5] SENKOV O N, SENKOVA S V, WOODWARD C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J].Acta Materialia, 2014, 68: 214-228.
[6] [6] LIU L. Effect of alloying elements on microstructure and properties of high-entropy alloys[D]. Changchun: Jilin University, 2012.
[7] [7] ZHOU Y J, ZHANG Y, WANG Y L, et al. Microstructurecharacterization of Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloy system with multi-principal elements[J]. Rare Metal Materials and Engineering, 2007, 36(12): 2136-2139.
[8] [8] CHENG S M. Study on microstructure and properties of CrFeCoNiTix high entropy alloy prepared by powder metallurgy [D]. Harbin: Harbin University of Science and Technology, 2019
[9] [9] WANG Z H, NIU B, WANG Q, et al. Designingultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles[J]. Journal of Materials Science & Technology, 2021, 93: 60-70.
[10] [10] YANG J, WU J, ZHANG C Y, et al. Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution[J]. Journal of Alloys and Compounds, 2020, 819: 152943.
[11] [11] LIAO W B, ZHANG H T, LIU Z Y, et al. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering[J]. Entropy (Basel, Switzerland), 2019, 21(2): 146.
[12] [12] LI D S, ZHANG J, MENG P, et al. Forming characteristics of Ni+20% Cr3C2 coating by laser cladding[J]. Applied Laser, 2021, 41(3): 447-453.
[14] [14] ZHANG S Y, HAN B, LI M Y, et al. Investigation on microstructure and properties of laser cladded AlCoCrCuFeNi high entropy alloy coating by ultrasonic impact treatment[J]. Intermetallics, 2021, 128: 107017.
[15] [15] ZHANG H, PAN Y, HE Y Z. Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6FeNiCoCrAlTiSi multicomponent ferrous alloy coating[J]. Surface and Coatings Technology, 2011, 205(16): 4068-4072.
[16] [16] LIU J, LIU H, CHEN P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2019, 361: 63-74.
[17] [17] JUAN Y F, LI J, JIANG Y Q, et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings[J]. Applied Surface Science, 2019, 465: 700-714.
[18] [18] QIU X W, LIU C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216-220.
[19] [19] HSU Y J,CHIANG W C, WU J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics, 2005, 92(1): 112-117.
[20] [20] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.
[21] [21] GUO Y X, SHANG X J, LIU Q B. Microstructure and properties of in situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings[J]. Surface and Coatings Technology, 2018, 344: 353-358.
[22] [22] WU C L, ZHANG S, ZHANG C H, et al. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying[J]. Journal of Alloys and Compounds, 2017, 698: 761-770.
[23] [23] ZHANG S, WU C L, ZHANG C H, et al. Laser surface alloying ofFeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Optics & Laser Technology, 2016, 84: 23-31.
[24] [24] ZHOU F, LIU Q B, LI D L. Microstructure and properties of laser cladding MoFeCrTiWSix multi-principal element alloy coatings[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3941-3946.
[25] [25] AN X L, LIU Q B, ZHENG B. Microstructure and properties of laser cladding high entropy alloyMoFeCrTiWAlxSiy coating[J]. Infrared and Laser Engineering, 2014, 43(4): 1140-1144.
[26] [26] ZHOU F, LIU Q B, ZHENG B. Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating[J]. High Power Laser and Particle Beams, 2015, 27(11): 272-277.
[27] [27] WANG H L,GUO Y X, LAN H W, et al. Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding[J]. Surface Technology, 2019, 48(6): 130-137.
[28] [28] ZHOU F. Microstructure evolution and high temperature softening resistance of laser cladding high melting point and high entropy alloy coatings[D]. Guiyang: Guizhou University, 2018.
[29] [29] SHANG X J, LIU Q B, GUO Y X, et al. Effect of Nb on microstructure and properties of laser claddingMoFeCrTiWAlNbx high-melting-point high-entropy alloy[J]. Journal of Functional Materials, 2017, 48(12): 12214-12220.
[30] [30] SHANG X J, LIU Q B, GUO Y X, et al. Effect of annealing on microstructure and properties of laser claddingMoFeCrTiWAlNb high-melting-point high-entropy alloy coating[J]. Transactions of Materials and Heat Treatment, 2017, 38(11): 101-107.
[31] [31] ZHANG Y, ZHOUY, LIN J, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538.
[32] [32] REN B, LIU Z X, LI D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system[J]. Journal of Alloys and Compounds, 2010, 493(1-2): 148-153.
[33] [33] YANG X, ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2-3): 233-238.
[34] [34] GUO S, LIU C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446.
[35] [35] SENKOV O N, MIRACLE D B. A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys[J]. Journal of Alloys and Compounds, 2016, 658: 603-607.
[36] [36] KING D J M, MIDDLEBURGH S C, MCGREGOR A G, et al. Predicting the formation and stability of single phase high-entropy alloys[J]. Acta Materialia, 2016, 104: 172-179.
[37] [37] ZHANG W, YE X C, XU D, et al. Microstructures and properties of CrxFeNi3-xAl high-entropy alloys[J]. Applied Physics A, 2021, 128(1): 1-9.
[38] [38] YANG X, CHEN S Y, COTTON J D, et al. Phase stability of low-density,multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. JOM, 2014, 66(10): 2009-2020.
[39] [39] YAN X H, LI J S, ZHANG W R, et al. A brief review of high-entropy films[J]. Materials Chemistry and Physics, 2018, 210: 12-19.
[40] [40] GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability offcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505.
[41] [41] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J].Acta Materialia, 2017, 122: 448-511.
[42] [42] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its applicationto characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829.
[43] [43] ZHENG B, LIU Q B, ZHANG L Y. Microstructure and properties ofMoFeCrTiW high-entropy alloy coating prepared by laser cladding[J]. Advanced Materials Research, 2013, 820: 63-66.
[44] [44] GUO Y X, LIU Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102: 78-87.
[45] [45] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20): 6043-6048.
[46] [46] WANG H L, LIU Q B,GUO Y X, et al. MoFe1.5-CrTiWAlNbx refractory high-entropy alloy coating fabricated by laser cladding[J]. Intermetallics, 2019, 115: 106613.
[47] [47] ZHANG Y, LIU Y, LI Y X, et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite[J]. Materials Letters, 2016, 174: 82-85.
[48] [48] CHEN Y X, ZHU S, WANG X M, et al. Microstructure evolution and strengthening mechanism of Al0.4-CoCu0.6NiSix (x=0-0.2) high entropy alloys prepared by vacuum arc melting and copper injection fast solidification[J]. Vacuum, 2018, 150: 84-95.
[49] [49] LUO X X, YAO Z J, ZHANG P Z, et al. Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties[J]. Journal of Alloys and Compounds, 2018, 755: 41-54.
[50] [50] ZHOU J B, ZHANG J, ZHANG L T, et al. Effect of laser process parameters on crack rate and microstructure of Ni60/WC clad coating[J]. Heat Treatment of Metals, 2021, 46(9): 252-257.
[51] [51] LIU J. Numerical simulation and experimental study of laser cladding with different laser spot[D]. Hangzhou: Zhejiang University of Technology, 2016.
[52] [52] SHI J W, LI L Q, CHEN YB, et al. Numerical simulation of bending properties for sheet metal with different laser source modes[J]. Chinese Journal of Lasers, 2007, 34(9): 1303-1307.
[54] [54] ZHANG M N, ZHOU X L, YU X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311: 321-329.
[55] [55] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20-Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.
[56] [56] SENKOV O N, SENKOVA S V, WOODWARD C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Materialia, 2013, 61(5): 1545-1557.
[57] [57] JUAN C C, TSAI M H, TSAI C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62: 76-83.
[58] [58] HORI T, NAGASE T, TODAI M, et al. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Scripta Materialia, 2019, 172: 83-87.
[59] [59] GUO N N, WANG L, LUO L S, et al. Microstructure and mechanical properties of in situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5-NbHf0.5ZrTi matrix alloy composite[J]. Intermetallics, 2016, 69: 74-77.
[60] [60] KANG B, LEE J, RYU H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering: A, 2018, 712: 616-624.
[61] [61] LI Q Y, ZHANG H, LI D C, et al. WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition[J]. Materials (Basel, Switzerland), 2019, 12(3): 533.
[62] [62] HAO C P, WANG Q, MA R T, et al. Cluster-plus-glue-atom model in bcc solid solution alloys[J]. Acta Physica Sinica, 2011, 60(11): 116101.
[63] [63] LI L Q, SHEN F M, ZHOU Y D, et al. Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laser cladding[J]. Chinese Journal of Lasers, 2019, 46(10): 1002010.
Get Citation
Copy Citation Text
Bo Shenghong, Liu Qibin. The Progress of High Entropy Alloys Coating Fabricated by Laser Cladding on Tool Steel[J]. APPLIED LASER, 2022, 42(5): 20
Received: Sep. 22, 2021
Accepted: --
Published Online: Jan. 16, 2023
The Author Email: Shenghong Bo (2607536318@qq.com)