High Power Laser and Particle Beams, Volume. 35, Issue 1, 012010(2023)
Research progress on radiative spin polarized plasma
[1] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 8, 630-635(2021).
[2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).
[3] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 78, 591-640(2006).
[4] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 84, 1177-1228(2012).
[5] Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 41, 1-51(2015).
[6] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 101, 200403(2008).
[7] Shen Baifei, Bu Zhigang, Xu Jiancai, et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam[J]. Plasma Physics and Controlled Fusion, 60, 044002(2018).
[8] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 7, 13686(2016).
[9] Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 92, 053107(2015).
[10] Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 8, 8400(2018).
[11] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 4, 014401(2019).
[12] Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 53, 014004(2011).
[13] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 112, 145003(2014).
[14] Gong Zheng, Hu Ronghao, Shou Yinren, et al. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams[J]. Matter and Radiation at Extremes, 1, 308-315(2016).
[15] Qiao Bin, Chang Hengxin, Xie Y, et al. Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes[J]. Physics of Plasmas, 24, 123101(2017).
[16] Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 1, 93(2018).
[17] Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 4, 064403(2019).
[18] Baier V N, Katkov V M. Radiational polarization of electrons in inhomogeneous magnetic field[J]. Physics Letters A, 24, 327-329(1967).
[19] Baĭer V N. Radiative polarization of electrons in storage rings[J]. Soviet Physics Uspekhi, 14, 695-714(1972).
[20] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 8, 031004(2018).
[21] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 8, 011020(2018).
[22] Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 79, 1626-1629(1997).
[23] Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 23, 033109(2016).
[24] Chen Hui, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 16, 122702(2009).
[25] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 110, 255002(2013).
[26] Derbenev Y S, Kondratenko A M. Polarization kinetics of particles in storage rings[J]. Soviet Physics JETP, 37, 968-973(1973).
[27] Del Sorbo D, Seipt D, Blackburn T G, et al. Spin polarization of electrons by ultraintense lasers[J]. Physical Review A, 96, 043407(2017).
[28] Seipt D, Del Sorbo D, Ridgers C P, et al. Theory of radiative electron polarization in strong laser fields[J]. Physical Review A, 98, 023417(2018).
[29] Del Sorbo D, Seipt D, Thomas A G R, et al. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers[J]. Plasma Physics and Controlled Fusion, 60, 064003(2018).
[30] Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 122, 154801(2019).
[31] Li Yanfei, Guo Rentong, Shaisultanov R, et al. Electron polarimetry with nonlinear Compton scattering[J]. Physical Review Applied, 12, 014047(2019).
[32] Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 800, 135120(2020).
[33] Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 123, 174801(2019).
[34] Song Huaihang, Wang Weimin, Li Jianxing, et al. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse[J]. Physical Review A, 100, 033407(2019).
[35] Seipt D, Del Sorbo D, Ridgers C P, et al. Ultrafast polarization of an electron beam in an intense bichromatic laser field[J]. Physical Review A, 100, 061402(R)(2019).
[36] Geng Xuesong, Ji Liangliang, Shen B F, et al. Spin-dependent radiative deflection in the quantum radiation-reaction regime[J]. New Journal of Physics, 22, 013007(2020).
[37] Wen Meng, Tamburini M, Keitel C H. Polarized laser-wakefield-accelerated kiloampere electron beams[J]. Physical Review Letters, 122, 214801(2019).
[38] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron-beam acceleration driven by vortex laser pulses[J]. New Journal of Physics, 21, 073052(2019).
[39] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection[J]. Physical Review E, 100, 043202(2019).
[40] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Physical Review Applied, 13, 044064(2020).
[41] Hützen A, Thomas J, Böker J, et al. Polarized proton beams from laser-induced plasmas[J]. High Power Laser Science and Engineering, 7, e16(2019).
[42] Jin Luling, Wen Meng, Zhang Xiaomei, et al. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses[J]. Physical Review E, 102, 011201(R)(2020).
[43] Gong Zheng, Shou Yinren, Tang Yuhui, et al. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma[J]. Physical Review E, 102, 053212(2020).
[44] Li X F, Gibbon P, Hützen A, et al. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas[J]. Physical Review E, 104, 015216(2021).
[45] [45] Reichwein L, Büscher M, Pukhov A. Acceleration of spinpolarized proton beams via two parallel laser pulses[DBOL]. arXiv preprint arXiv: 2201.11534, 2022.
[46] Büscher M, Hützen A, Ji Liangliang, et al. Generation of polarized particle beams at relativistic laser intensities[J]. High Power Laser Science and Engineering, 8, e36(2020).
[47] Thomas B A L H. I. The kinematics of an electron with an axis[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 1-22(1927).
[48] [48] Bargmann V, Michel L, Telegdi V L. Precession of the polarization of particles moving in a homogeneous electromagic field[M]Noz M E, Kim Y S. Special Relativity Quantum They. Ddrecht: Springer, 1988: 443446.
[49] Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 14, 054401(2011).
[50] Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 260, 273-285(2014).
[51] Gonoskov A, Bastrakov S, Efimenko E, et al. Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments[J]. Physical Review E, 92, 023305(2015).
[52] Gong Zheng, Hu Ronghao, Yu Jinqing, et al. Radiation rebound and quantum splash in electron-laser collisions[J]. Physical Review Accelerators and Beams, 22, 093401(2019).
[53] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 125, 044802(2020).
[54] Chen Yueyue, Hatsagortsyan K Z, Keitel C H, et al. Electron spin- and photon polarization-resolved probabilities of strong-field QED processes[J]. Physical Review D, 105, 116013(2022).
[55] Xue Kun, Guo Rentong, Wan Feng, et al. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process[J]. Fundamental Research, 2, 539-545(2022).
[56] Tang Yuhui, Gong Zheng, Yu Jinqing, et al. Radiative polarization dynamics of relativistic electrons in an intense electromagnetic field[J]. Physical Review A, 103, 042807(2021).
[57] Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 128, 174801(2022).
[58] Gong Zheng, Hatsagortsyan K Z, Keitel C H. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization[J]. Physical Review Letters, 127, 165002(2021).
[59] Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 124, 014801(2020).
[60] Pukhov A, Meyer-Ter-Vehn J. Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation[J]. Physical Review Letters, 76, 3975-3978(1996).
[61] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 6, 2847-2854(1999).
[62] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 116, 185003(2016).
[63] Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 102, 013206(2020).
[64] Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 23, 023031(2021).
[65] Xue Kun, Dou Zhenke, Wan Feng, et al. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 5, 054402(2020).
[66] Wan Feng, Wang Yu, Guo Rentong, et al. High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry[J]. Physical Review Research, 2, 032049(R)(2020).
[67] Sun Ting, Wang Yu, Guo Rentong, . Review on laser-driven high-energy polarized electron and positron beams and γ-rays[J]. Acta Physica Sinica, 70, 087901(2021).
[68] Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 7, 014401(2022).
[69] Gong Zheng, Hatsagortsyan K Z, Keitel C H. Deciphering
[70] Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 23, 075005(2021).
[71] Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 129, 035001(2022).
[72] Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 4, L022028(2022).
[73] Nie Zan, Li Fei, Morales F, et al.
[74] Nie Zan, Li Fei, Morales F, et al. Highly spin-polarized multi-GeV electron beams generated by single-species plasma photocathodes[J]. Physical Review Research, 4, 033015(2022).
[75] Han Qianqian, Geng Xuesong, Shen Baifei, et al. Ultra-fast polarization of a thin electron layer in the rotational standing-wave field driven by double ultra-intense laser pulses[J]. New Journal of Physics, 24, 063013(2022).
[76] Accardi A, Albacete J L, Anselmino M, et al. Electron-ion collider: the next QCD frontier[J]. The European Physical Journal A, 52, 268(2016).
[77] An Xiangyan, Chen Min, Li Jianxing, et al. Mapping electromagnetic fields structure in plasma using a spin polarized electron beam[J]. Physics of Plasmas, 26, 123106(2019).
Get Citation
Copy Citation Text
Zheng Gong. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35(1): 012010
Category: Strong Field Quantum Electrodynamics Excited by Super Intense Laser Pulse
Received: Apr. 19, 2022
Accepted: --
Published Online: Feb. 10, 2023
The Author Email: