Chinese Journal of Lasers, Volume. 40, Issue 2, 202005(2013)
Wavelength Switchable Passive Mode-Locking Fiber Laser Based on Single-Wall Carbon Nanotube
[1] [1] Y. C. Chen, N. R. Raravikar, L. S. Schadler et al.. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm[J]. Appl. Phys. Lett., 2002, 81(6): 975~977
[2] [2] H. Kataura, Y. Kumazawa, Y. Maniwa et al.. Optical properties of single wall carbon nanotubes[J]. Synth. Met., 1999, 103(3): 2555~2558
[3] [3] C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers. Ultrafast Raman laser mode-locked by nanotubes[J]. Opt. Lett., 2011, 36(20): 3996~3998
[4] [4] S. J. Chang, H. I. Ju, H. Y. Sang et al.. Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes[J]. Opt. Express, 2011, 19(20): 19775~19780
[5] [5] J. Liu, Y. G. Wang, Z. S. Qu et al.. 2 μm passive Q-switched mode-locked Tm3+YAP laser with single-walled carbon nanotube absorber[J]. Opt. & Laser Technol., 2012, 44(4): 960~962
[6] [6] C. C. Liu, Y. G. Wang, J. Liu et al.. Ultrafast laser performance of Yb3+Sc2SiO5 crystal with a single-walled carbon nanotube absorber[J]. Opt. Commun., 2012, 285(6): 1352~1355
[7] [7] H. F. Li, S. M. Zhang, J. Du et al.. Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber[J]. Opt. Commun., 2012, 285(6): 1347~1351
[8] [8] M. Zhang, E. J. R. Kelleher, A. S. Pozharov et al.. Passive synchronization of all-fiber lasers through a common saturable absorber[J]. Opt. Lett., 2011, 36( 20): 3984~3986
[9] [9] A. Martinez, K. M. Zhou, I. Bennion et al.. Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber[J]. Opt. Express, 2010, 18(11): 11008~11014
[11] [11] S. Yamashita, Y. Inoue, H. Yaguchi et al.. S-, C-, L-band picosecond fiber pulse sources using a broadband carbon-nanotube-based mode-locker[C]. In 2004 30th European Conference on Optical Communication, 2004. Th1.3.4
[12] [12] S. Kivist, T. Hakulinen, A. Kaskela et al.. Carbon nanotube films for ultrafast broadband technology[J]. Opt. Express, 2009, 17(4): 2358~2363
[13] [13] W. B. Cho, J. H. Yim, S. Y. Choi et al.. Ultra-broadband (>500 nm) single-walled carbon nanotube saturable absorber mode-locking of bulk solid-state lasers[C]. Advanced Solid-State Photonics, 2010. AWE4
[14] [14] V. J. Matsas, T. P. Newson, D. J. Richardson et al.. Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation[J]. Electron. Lett., 1992, 28(15): 1391~1393
[15] [15] Z. C. Luo, A. P. Luo, W. C. Xu et al.. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter[J]. IEEE Photon. J., 2010, 2(4): 571~577
[16] [16] Zhang Panzheng, Fan Wei, Wang Xiaochao et al.. Mode-locking and multiwavelength operation from all-fiber ytterbium doped laser[J]. Chinese J. Lasers, 2011, 38(3): 0302001
[17] [17] Tian Zhen, Liu Shanliang, Zhang Bingyuan et al.. Graphene mode-locking Er3+ doped fiber pulse laser[J]. Chinese J. Lasers, 2011, 38(3): 0302004
[18] [18] H. Zhang, D. Y. Tang, X. Wu et al.. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Opt. Express, 2009, 17(15): 12692~12697
[19] [19] Wang Guanghui, Wang Zhiteng, Chen Yu et al.. Passively graphene mode-locked soliton erbium-doped fiber lasers[J]. Chinese J. Lasers, 2012, 39(6): 0602003
[20] [20] R. Going, D. Popa, F. Torrisi et al.. 500 fs wideband tunable fiber laser mode-locked by nanotubes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44(6): 1078~1081
[21] [21] Z. P. Sun, P. Daniel, H. Tawfique et al.. A stable, wideband tunable, near transform-limited, graphene-mode-locked[J]. Nano. Res., 2010, 3(9): 653~660
[22] [22] W. B. Che, J. W. Kim, H. W. Lee et al.. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 125 μm[J]. Opt. Lett., 2011, 36( 20): 4089~4091
[23] [23] H. Zhang, D. Y. Tang, L. M. Zhao et al.. Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion[J]. Laser Phys. Lett., 2010, 7(8): 591~596
[24] [24] H. Zhang, D. Y. Tang, R. J. Knize et al.. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Appl. Phys. Lett., 96(11): 111112
[25] [25] K. Kashiwagi, S. J. Yamashita, S. Y. Set. In-situ monitoring of optical deposition of carbon nanotubes onto fiber end[J]. Opt. Express, 2009, 17(7): 5711~5715
[26] [26] P. C. Becker, N. A. Olsson, J. R. Simpson. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology[M]. Verlag: Academic Press, 1999
[27] [27] Zhu Pan, Sang Mei, Wang Xiaolong et al.. Passive mode-locking pulse fiber laser research based on single-walled carbon nanotube saturable absorber[J]. J. Optoelectronics·Laser, 2012, 23(9): 1686~1690
[28] [28] Zhu Pan, Sang Mei, Wang Xiaolong et al.. The research on nonlinear characteristics of SWCNT film by Z-Scan method measurement[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091202
[29] [29] K. Jiang, S. G. Fu, P. Shum. Experimental observations of multiple solitons generation in a carbon-nanotube based passively mode-locked fiber laser[C]. International Conference on Communication and Mobile Computing, 2010, 2: 43~46
Get Citation
Copy Citation Text
Zhu Pan, Sang Mei, Gao Yang, Wang Xiaolong, Liu Ke, Wang Junlong, Yang Tianxin. Wavelength Switchable Passive Mode-Locking Fiber Laser Based on Single-Wall Carbon Nanotube[J]. Chinese Journal of Lasers, 2013, 40(2): 202005
Category: Laser physics
Received: Sep. 3, 2012
Accepted: --
Published Online: Jan. 8, 2013
The Author Email: Pan Zhu (zhuyangpp@163.com)