Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010012(2023)

Skeleton Action Recognition Based on Dense Residual Shift Graph Convolutional Network

Tao Yang1,2、*, Jun Han1,2, and Haiyan Jiang1,2
Author Affiliations
  • 1College of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2Shanghai Institute of Advanced Communication and Data Science, Shanghai 200444, China
  • show less
    Figures & Tables(16)
    Diagram of system block
    Shift convolution operation. (a) Node 1 shift; (b) node 2 shift; (c) feature map after shift
    Diagram of DRS-GCN block
    Diagrams of dense residual network structure. (a) Residual connection; (b) dense connection; (c) dense residual connection
    Diagram of joint-motion
    Examples of DAILY dataset. (a) Walking; (b) throwing; (c) falling
    Node labeling of OpenPose
    Examples of skeleton diagram. (a) Walking; (b) throwing; (c) falling
    Confusion matrix of multi-class
    Curves of training accuracy and loss value on DAILY dataset. (a) Accuracy; (b) loss value
    Curves of training accuracy and loss value on NTU60 RGB+D dataset (CS). (a) Accuracy of CS; (b) loss value of CS
    Curves of training accuracy and loss value on NTU60 RGB+D dataset.(CV). (a) Accuracy of CV; (b) loss value of CV
    • Table 1. Research on performance of multi-stream network on NTU60 RGB+D dataset

      View table

      Table 1. Research on performance of multi-stream network on NTU60 RGB+D dataset

      MethodCS /%CV /%
      DRS-GCN(J)88.195.3
      DRS-GCN(B)88.994.8
      DRS-GCN(J-M)86.893.6
      DRS-GCN(B-M)87.093.7
      4s-DRS-GCN90.896.3
    • Table 2. Experimental data comparison of 7 behaviors on DAILY dataset

      View table

      Table 2. Experimental data comparison of 7 behaviors on DAILY dataset

      ClassRecall /%Precision /%
      DRS-GCNShift-GCNDRS-GCNShift-GCN
      walking73.175.073.169.2
      sitting90.585.784.480.0
      standing84.872.686.782.2
      donning88.684.190.786.1
      doffing83.385.081.479.1
      throwing60.053.261.456.8
      falling95.094.997.494.9
    • Table 3. Comparative analysis of three indicators on DAILY dataset

      View table

      Table 3. Comparative analysis of three indicators on DAILY dataset

      MethodRecall /%Precision /%Accuracy /%
      Shift-GCN1178.678.377.8
      DRS-GCN82.282.281.7
    • Table 4. Comparison of experimental data between DRS-GCN and advanced algorithms on NTU60 RGB+D dataset

      View table

      Table 4. Comparison of experimental data between DRS-GCN and advanced algorithms on NTU60 RGB+D dataset

      MethodAccuracy /%FLOPs /109
      CSCV
      VA-LSTM1979.287.7
      ST-GCN981.588.3
      HCN2086.591.1
      AS-GCN1086.894.227.0
      2s-AGCN1288.595.135.8
      Shift-GCN1387.895.12.5
      DRS-GCN88.195.33.7
      4s-DRS-GCN90.896.314.8
    Tools

    Get Citation

    Copy Citation Text

    Tao Yang, Jun Han, Haiyan Jiang. Skeleton Action Recognition Based on Dense Residual Shift Graph Convolutional Network[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 4, 2022

    Accepted: Feb. 25, 2022

    Published Online: May. 17, 2023

    The Author Email: Tao Yang (983785320@qq.com)

    DOI:10.3788/LOP220428

    Topics