Journal of Synthetic Crystals, Volume. 49, Issue 12, 2313(2020)
Synthesis of Erbium Doped g-C3N4 Catalyst and Its Photocatalytic Degradation Activity under Red Light
[1] [1] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251.
[2] [2] Zhang Q, Deng J, Xu Z, et al. High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons[J]. ACS Catalysis, 2017, 7(9): 6225-6234.
[3] [3] Li X, Liang L, Sun Y, et al. Ultrathin conductor enabling efficient IR light CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(1): 423-430.
[4] [4] Lian Z, Sakamoto M, Vequizo J J M, et al. Plasmonic p n junction for infrared light to chemical energy conversion[J]. Journal of the American Chemical Society, 2019, 141(6): 2446-2450.
[5] [5] Liu Y, Zhu G, Gao J, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017, 205: 421-432.
[6] [6] Yang R, Cai J, Lv K, et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 210: 184-193.
[7] [7] Xu T, Zhang L, Cheng H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B:Environmental, 2011, 101(3): 382-387.
[8] [8] Chen X, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[9] [9] Xu F, Zhang L, Cheng B, et al. Direct z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12291-12298.
[10] [10] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
[11] [11] Wang X C, Chen X, Thomas A, et al. Metal-containing carbon nitride compounds: a new functional organic metal hybrid material[J]. Advanced Materials, 2009, 21(16): 1609-1612.
[12] [12] Zhu B, Cheng B, Zhang L, et al. Review on DFT calculation of s triazine based carbon nitride[J]. Carbon Energy, 2019(1): 32-56.
[13] [13] Chen X, Zhang J, Fu X, et al. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light[J]. Journal of the American Chemical Society, 2009, 131(33): 11658-11659.
[14] [14] Zhang J, Zhang G, Chen X, et al. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light[J]. Angewandte Chemie International Edition, 2012, 51(13): 3183-3187.
[15] [15] Zhang X, Yuan X, Jiang L, et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances[J]. Chemical Engineering Journal, 2020, 390: 124475.
[16] [16] Ren Y, Zeng D, Ong W J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review[J]. Chinese Journal of Catalysis, 2019, 40(3): 289-319.
[17] [17] Huang D, Li Z, Zeng G, et al. Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 240: 153-173.
[18] [18] Cui Y, Ding Z, Fu X, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie International Edition, 2012, 51(47): 11814-11818.
[19] [19] Zhang G, Li G, Lan Z A, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity[J]. Angewandte Chemie International Edition, 2017, 56(43): 13445-13449.
[20] [20] Yang P, Wang R, Zhou M, et al. Photochemical construction of carbonitride structures for red-Light redox catalysis[J]. Angewandte Chemie International Edition, 2018, 57(28): 8674-8677.
[21] [21] Fu F, Shen H, Sun X, et al. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis[J]. Applied Catalysis B:Environmental, 2019, 247: 150-162.
[22] [22] Liu J, Fang W, Wei Z, et al. Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach [J]. Applied Catalysis B:Environmental, 2018, 238: 465-470.
[23] [23] Yang P, Zhuzhang H, Wang R, et al. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion[J]. Angewandte Chemie, 2019, 131: 1146-1149.
[24] [24] Han S, Deng R, Xie X, et al. Enhancing luminescence in lanthanide doped upconversion nanoparticles[J]. Angewandte Chemie International Edition, 2014, 53(44): 11702-11715.
[25] [25] Yang X, Qian F, Zou G, et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Applied Catalysis B:Environmental, 2016, 193: 22-35.
[26] [26] Shi L, Chang K, Zhang H, et al. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light[J]. Small, 2016, 12(32): 4431-4439.
[27] [27] Gao J, Wang Y, Zhou S, et al. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance[J]. Chem Cat Chem, 2017, 9(9): 1708-1715.
[28] [28] Wang P, Chen S, Bai Y, et al. Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation[J]. Fuel, 2017, 195: 69-81.
[29] [29] Liu L Y, Xu H, Xu Y G, et al. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity[J]. Applied Catalysis B:Environmental, 2017, 207: 429-437.
[30] [30] Tay Q, Kanhere P, Ng C F, et al. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production[J]. Chemistry of Materials, 2015, 27(14): 4930-4933.
[31] [31] Lin Z, Wang X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition,2013, 52(6): 1735-1738.
[32] [32] Yan W, Yan L, Jing C. Impact of doped metals on urea-derived g-C3 N4 for photocatalytic degradation of antibiotics: structure, photoactivity and degradation mechanisms[J]. Applied Catalysis B:Environmental, 2019, 244: 475-485.
[33] [33] Zhang J, Zhang M, Sun R Q, et al. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions[J]. Angewandte Chemie International Edition, 2012, 51(40): 10145-10149.
[34] [34] Tiwari J N, Seo Y K, Yoon T, et al. Accelerated bone regeneration by two photon photoactivated carbon nitride nanosheets[J]. ACS Nano, 2017, 11(1): 742-751.
[35] [35] Liu J, Yang Y, Liu N, et al. Total photocatalysis conversion from cyclohexane to cyclohexanone by C3N4/Au nanocomposites[J]. Green Chemistry, 2014, 16(10): 4559-4565.
Get Citation
Copy Citation Text
XU Qili, SHEN Chaofeng, HE Changchun, SHI Wei, ZHANG Hui, YIN Yujie, TIAN Jing, ZHANG Ziyue, CHEN Na, WANG Peng. Synthesis of Erbium Doped g-C3N4 Catalyst and Its Photocatalytic Degradation Activity under Red Light[J]. Journal of Synthetic Crystals, 2020, 49(12): 2313
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: XU Qili (xuqilil23@163.com)
CSTR:32186.14.