Chinese Journal of Lasers, Volume. 43, Issue 6, 609002(2016)
Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of Intensity Equation: A Review
[1] [1] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 1982, 217(4566): 1252-1255.
[2] [2] Wilson T. Confocal microscopy[M]. London: Academic Press, 1990: 1-64.
[3] [3] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.
[4] [4] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16: 9s-13s.
[5] [5] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.
[6] [6] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.
[7] [7] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070-4075.
[8] [8] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85.
[9] [9] Schnars U, Jueptner W. Digital holography[M]. Heidelberg: Springer Berlin Heidelberg, 2005.
[10] [10] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen (in Germany)[J]. Z Instrumentenkd, 1900, 20: 47-58.
[11] [11] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
[12] [12] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 1971, 61: 656.
[13] [13] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237.
[14] [14] Gerchberg R W, Saxton W. Phase determination from image and diffraction plane pictures in electron-microscope[J]. Optik, 1971, 34(3): 275-283.
[15] [15] Eisebitt S, Lüning J, Schlotter W, et al.. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.
[16] [16] Marchesini S, He H, Chapman H N, et al.. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 140101.
[17] [17] Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]. Proceedings of the 23rd Annual Technical Symposium, International Society for Optics and Photonics, 1979: 32-39.
[18] [18] Guyon O. Limits of adaptive optics for high-contrast imaging[J]. The Astrophysical Journal, 2005, 629(1): 592.
[19] [19] Zuo J M, Vartanyants I, Gao M, et al.. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419-1421.
[20] [20] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.
[21] [21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.
[22] [22] Fienup J, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907.
[23] [23] Lu G, Zhang Z, Francis T S, et al.. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Optical Engineering, 1994, 33(2): 548-555.
[24] [24] Misell D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D, 1973, 6(1): L6.
[25] [25] Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 2007, 75(4): 043805.
[26] [26] Bao P, Zhang F, Pedrini G, et al.. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309-311.
[27] [27] Anand A, Pedrini G, Osten W, et al.. Wavefront sensing with random amplitude mask and phase retrieval[J]. Optics Letters, 2007, 32(11): 1584-1586.
[28] [28] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
[29] [29] Waller L. Phase imaging with partially coherent light[C]. SPIE, 2013, 8589: 85890K.
[30] [30] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.
[31] [31] Thibault P, Dierolf M, Menzel A, et al.. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.
[32] [32] Thibault P, Dierolf M, Bunk O, et al.. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.
[33] [33] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.
[34] [34] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.
[35] [35] Maiden A M, Humphry M J, Sarahan M C, et al.. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.
[36] [36] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.
[37] [37] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.
[38] [38] Maiden A M, Humphry M J, Zhang F, et al.. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.
[39] [39] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.
[41] [41] Wang Baosheng, Gao Shumei, Wang Jicheng, et al.. Influence of charge coupled device saturation on PIE imaging[J]. Acta Optica Sinica, 2013, 33(6): 0611001.
[42] [42] Wang Yali, Shi Yishi, Li Tuo, et al.. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band[J]. Acta Physica Sinica, 2013, 62(6): 064206.
[43] [43] Teague M R. Deterministic phase retrieval: A Green′s function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.
[44] [44] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586-2589.
[45] [45] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s functions[J]. Journal of the Optical Society of America A, 2010, 27(10): 2244-2251.
[46] [46] Semichaevsky A, Testorf M. Phase-space interpretation of deterministic phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(11): 2173-2179.
[47] [47] Almoro P F, Waller L, Agour M, et al.. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088-2090.
[48] [48] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. Journal of the Optical Society of America A, 1995, 12(9): 1942-1946.
[49] [49] Sheppard C J R. Defocused transfer function for a partially coherent microscope and application to phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(5): 828-831.
[50] [50] Nugent K A, Gureyev T E, Cookson D F, et al.. Quantitative phase imaging using hard X rays[J]. Physical Review Letters, 1996, 77(14): 2961-2964.
[51] [51] Barty A, Nugent K A, Paganin D, et al.. Quantitative optical phase microscopy[J]. Optics Letters, 1998, 23(11): 817-819.
[52] [52] Kou S S, Waller L, Barbastathis G, et al.. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447-449.
[53] [53] Waller L, Kou S S, Sheppard C J R, et al.. Phase from chromatic aberrations[J]. Optics Express, 2010, 18(22): 22817-22825.
[54] [54] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4): 707-709.
[55] [55] Roddier F. Curvature sensing and compensation: A new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223-1225.
[56] [56] Roddier F. Wavefront sensing and the irradiance transport equation[J]. Applied Optics, 1990, 29(10): 1402-1403.
[57] [57] Han I W. New method for estimating wavefront from curvature signal by curve fitting[J]. Optical Engineering, 1995, 34(4): 1232-1237.
[58] [58] Roddier F. Adaptive optics in astronomy[M]. Cambridge: Cambridge University Press, 1999.
[59] [59] Roddier C, Roddier F. Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes[J]. Journal of the Optical Society of America A, 1993, 10(11): 2277-2287.
[60] [60] Bajt S, Barty A, Nugent K A, et al.. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83(1): 67-73.
[61] [61] McMahon P J, Allman B E, Jacobson D L, et al.. Quantitative phase radiography with polychromatic neutrons[J]. Physical Review Letters, 2003, 91(14): 145502.
[62] [62] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1): 339-346.
[63] [63] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.
[64] [64] Zysk A M, Schoonover R W, Carney P S, et al.. Transport of intensity and spectrum for partially coherent fields[J]. Optics Letters, 2010, 35(13): 2239-2241.
[65] [65] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430-14441.
[66] [66] Waller L, Luo Y, Yang S Y, et al.. Transport of intensity phase imaging in a volume holographic microscope[J]. Optics Letters, 2010, 35(17): 2961-2963.
[67] [67] Barty A, Nugent K A, Roberts A, et al.. Quantitative phase tomography[J]. Optics Communications, 2000, 175(4): 329-336.
[68] [68] Tian L, Petruccelli J C, Miao Q, et al.. Compressive X-ray phase tomography based on the transport of intensity equation[J]. Optics Letters, 2013, 38(17): 3418-3421.
[69] [69] Xue B, Zheng S, Cui L, et al.. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Optics Express, 2011, 19(21): 20244-20250.
[70] [70] Bie R, Yuan X H, Zhao M, et al.. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Optics Express, 2012, 20(7): 8186-8191.
[71] [71] Tian L, Petruccelli J C, Barbastathis G. Nonlinear diffusion regularization for transport of intensity phase imaging[J]. Optics Letters, 2012, 37(19): 4131-4133.
[72] [72] Zheng S, Xue B, Xue W, et al.. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Optics Express, 2012, 20(2): 972-985.
[73] [73] Waller L, Tsang M, Ponda S, et al.. Phase and amplitude imaging from noisy images by Kalman filtering[J]. Optics Express, 2011, 19(3): 2805-2815.
[75] [75] Cheng Hong, Shen Chuan, Zhang Cheng, et al.. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001.
[78] [78] Liu Beibei, Yu Yingjie, Wu Xiaoyan, et al.. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Optics and Precision Engineering, 2015, 23(10z): 77-84.
[79] [79] Zuo C, Chen Q, Li H, et al.. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization[J]. Optics Express, 2014, 22(15): 18310-18324.
[80] [80] Zuo C, Chen Q, Huang L, et al.. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.
[81] [81] Zuo C, Chen Q, Yu Y, et al.. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.
[82] [82] Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Optics Letters, 2014, 39(3): 654.
[83] [83] Zuo C, Chen Q, Qu W, et al.. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.
[84] [84] Zuo C, Chen Q, Qu W, et al.. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.
[85] [85] Ichikawa K, Lohmann A W, Takeda M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: Experiments[J]. Applied Optics, 1988, 27(16): 3433-3436.
[86] [86] Gilbarg D A, Trudinger N S. Elliptic partial differential equations of second order[M]. New York: Springer, 2001.
[87] [87] Bhamra K S. Partial differential equations: An introductory treatment with applications[M]. New Delhi: PHI, 2010.
[88] [88] Woods S C, Greenaway A H. Wave-front sensing by use of a Green′s function solution to the intensity transport equation[J]. Journal of the Optical Society of America A, 2003, 20(3): 508-512.
[89] [89] Roddier N A. Algorithms for wavefront reconstruction out of curvature sensing data[C]. SPIE, 1991, 1542: 120-129.
[90] [90] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1-4): 65-75.
[91] [91] Pinhasi S V, Alimi R, Perelmutter L, et al.. Topography retrieval using different solutions of the transport intensity equation[J]. Journal of the Optical Society of America A, 2010, 27(10): 2285-2292.
[92] [92] Gureyev T E, Raven C, Snigirev A, et al.. Hard X-ray quantitative non-interferometric phase-contrast microscopy[J]. Journal of Physics D, 1999, 32(5): 563.
[93] [93] Gureyev T, Roberts A, Nugent K. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932-1942.
[94] [94] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. II: Orthogonal series solution for nonuniform illumination[J]. Journal of the Optical Society of America A, 1996, 13(8): 1670-1682.
[95] [95] Volkov V V, Zhu Y, de Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411-416.
[96] [96] Martinez-Carranza J, Falaggis K, Kozacki T, et al.. Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers[C]. SPIE, 2013, 8789: 87890N.
[97] [97] Huang L, Zuo C, Idir M, et al.. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Optics Letters, 2015, 40(9): 1976-1979.
[98] [98] Parvizi A, Müller J, Funken S A, et al.. A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation[J]. Ultramicroscopy, 2015, 154: 1-6.
[99] [99] Schmalz J A, Gureyev T E, Paganin D M, et al.. Phase retrieval using radiation and matter-wave fields: Validity of Teague′s method for solution of the transport-of-intensity equation[J]. Physical Review A, 2011, 84(2): 023808.
[100] [100] Shanker A, Sczyrba M, Connolly B, et al.. Critical assessment of the transport of intensity equation as a phase recovery technique in optical lithography[C]. SPIE, 2014, 9052: 90521D.
[101] [101] Beleggia M, Schofield M A, Volkov V V, et al.. On the transport of intensity technique for phase retrieval[J]. Ultramicroscopy, 2004, 102(1): 37-49.
[102] [102] Paganin D, Barty A, McMahon P J, et al.. Quantitative phase-amplitude microscopy. III: The effects of noise[J]. Journal of Microscopy, 2004, 214(1): 51-61.
[103] [103] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Journal of Electron Microscopy, 2005, 54(3): 191-197.
[104] [104] Roddier F. Curvature sensing: A diffraction theory[R]. NOAO Advanced Development Program, 1987.
[105] [105] Soto M, Acosta E, Ríos S. Performance analysis of curvature sensors: Optimum positioning of the measurement planes[J]. Optics Express, 2003, 11(20): 2577-2588.
[106] [106] Martin A V, Chen F R, Hsieh W K, et al.. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106(10): 914-924.
[107] [107] Huang S, Xi F, Liu C, et al.. Frequency analysis of a wavefront curvature sensor: Selection of propagation distance[J]. Journal of Modern Optics, 2012, 59(1): 35-41.
[108] [108] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 2010, 18(12): 12552-12561.
[109] [109] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Applied Optics, 2007, 46(33): 7978-7981.
[110] [110] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Optics Letters, 2014, 39(2): 182-185.
[111] [111] Zuo C, Chen Q, Yu Y, et al.. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.
[112] [112] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639.
[113] [113] Cowley J M. Diffraction physics (2nd edition)[M]. Amsterdam: North-Holland, 1976.
[114] [114] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Applied Optics, 2014, 53(16): D29-D39.
[115] [115] Zhang J S, Claus R A, Dauwels J, et al.. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Optics Express, 2014, 22(9): 10661-10674.
[116] [116] Barone-Nugent E D, Barty A, Nugent K A. Quantitative phase-amplitude microscopy I: Optical microscopy[J]. Journal of Microscopy, 2002, 206(3): 194-203.
[117] [117] Streibl N. Three-dimensional imaging by a microscope[J]. Journal of the Optical Society of America A, 1985, 2(2): 121-127.
[118] [118] Sheppard C J R. Three-dimensional phase imaging with the intensity transport equation[J]. Applied Optics, 2002, 41(28): 5951-5955.
[119] [119] Guigay J P, Langer M, Boistel R, et al.. Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region[J]. Optics Letters, 2007, 32(12): 1617-1619.
[120] [120] Kou S S, Waller L, Barbastathis G, et al.. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Optics Letters, 2011, 36(14): 2671-2673.
[121] [121] Jenkins M H, Gaylord T K. Quantitative phase microscopy via optimized inversion of the phase optical transfer function[J]. Applied Optics, 2015, 54(28): 8566-8579.
[122] [122] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Optics Express, 2015, 23(18): 23092-23107.
[123] [123] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Optics Express, 2015, 23(21): 28031-28049.
[124] [124] Goodman J W. Statistical optics[M]. New York: Wiley-Interscience, 1985: 567.
[125] [125] Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. UK: CPI Group Ltd, 2000.
[126] [126] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 1984, 49(1): 6-10.
[127] [127] Gureyev T, Paganin D M, Stevenson A W, et al.. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 2004, 93(6): 068103.
[128] [128] Gureyev T E, Nesterets Y I, Paganin D M, et al.. Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination[J]. Optics Communications, 2006, 259(2): 569-580.
[129] [129] Zuo C, Chen Q, Tian L, et al.. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20-32.
[130] [130] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 1986, 3(8): 1227-1238.
[131] [131] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proceedings of the IEEE, 1992, 80(4): 520-538.
[132] [132] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Optics Letters, 1996, 21(21): 1783-1785.
[133] [133] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 1994, 72(8): 1137-1140.
[134] [134] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nature Photonics, 2012, 6(7): 474-479.
[135] [135] Ng R, Levoy M, Brédif M, et al.. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report, 2005, 2(11): 1-11.
[136] [136] Adelson E, Bergen J R. The plenoptic function and the elements of early vision[M].//Computational models of visual processing. Cambridge: MIT Press, 1991: 3-20.
[137] [137] Levoy M, Hanrahan P. Light field rendering[C]. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996: 31-42.
[138] [138] Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 1968, 58(9): 1256-1259.
[139] [139] Zhang Z Y, Levoy M. Wigner distributions and how they relate to the light field[C]. IEEE International Conference on the Computational Photography, San Francisco, 2009.
[140] [140] Zuo C, Chen Q, Asundi A. Transport of intensity equation: A new approach to phase and light field[C]. SPIE, 2014, 9271: 92710H..
[141] [141] Orth A, Crozier K B. Light field moment imaging[J]. Optics Letters, 2013, 38(15): 2666-2668.
[142] [142] Liu J, Xu T, Yue W, et al.. Light-field moment microscopy with noise reduction[J]. Optics Express, 2015, 23(22): 29154-29162.
[143] [143] Blanchard P M, Fisher D J, Woods S C, et al.. Phase-diversity wave-front sensing with a distorted diffraction grating[J]. Applied Optics, 2000, 39(35): 6649-6655.
[144] [144] di Martino J M, Ayubi G A, Dalchiele E A, et al.. Single-shot phase recovery using two laterally separated defocused images[J]. Optics Communications, 2013, 293: 1-3.
[145] [145] Zuo C, Sun J, Zhang J, et al.. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11): 14314-14328.
[146] [146] Allman B E, McMahon P J, Nugent K, et al.. Phase radiography with neutrons[J]. Nature, 2000, 408(6809): 158-159.
[147] [147] Volkov V, Zhu Y. Lorentz phase microscopy of magnetic materials[J]. Ultramicroscopy, 2004, 98(2): 271-281.
[148] [148] Dorrer C, Zuegel J D. Optical testing using the transport-of-intensity equation[J]. Optics Express, 2007, 15(12): 7165-7175.
[149] [149] Shomali R, Darudi A, Nasiri S. Application of irradiance transport equation in aspheric surface testing[J]. Optik, 2012, 123(14): 1282-1286.
[150] [150] Ross G J, Bigelow A W, Randers-Pehrson G, et al.. Phase-based cell imaging techniques for microbeam irradiations[J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 241(1): 387-391.
[151] [151] Curl C L, Bellair C J, Harris P J, et al.. Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells[J]. Clinical Experimental Pharmacology and Physiology, 2004, 31(12): 896-901.
[152] [152] Curl C L, Bellair C, Harris P, et al.. Single cell volume measurement by quantitative phase microscopy (QPM): A case study of erythrocyte morphology[J]. Cellular Physiology and Biochemistry, 2006, 17(5-6): 193-200.
[153] [153] Dragomir N M, Goh X M, Curl C L, et al.. Quantitative polarized phase microscopy for birefringence imaging[J]. Optics Express, 2007, 15(26): 17690-17698.
[154] [154] Ampem-Lassen E, Huntington S T, Dragomir N M, et al.. Refractive index profiling of axially symmetric optical fibers: A new technique[J]. Optics Express, 2005, 13(9): 3277-3282.
[155] [155] Roberts A, Ampem-Lassen E, Barty A, et al.. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy[J]. Optics Letters, 2002, 27(23): 2061-2063.
[156] [156] Bostan E, Froustey E, Nilchian M, et al.. Variational phase imaging using the transport-of-intensity equation[J]. IEEE Transactions on Image Processing, 2016, 25(2): 807-817.
[157] [157] Nguyen T, Nehmetallah G, Tran D, et al.. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Applied Optics, 2015, 54(35): 10443-10453.
[158] [158] Zuo C, Chen Q, Asundi A. Comparison of digital holography and transport of intensity for quantitative phase contrast imaging[M]. //Fringe 2013. Heidelberg: Springer Berlin Heidelberg, 2014: 137-142.
[159] [159] Allen L, Faulkner H M L, Nugent K, et al.. Phase retrieval from images in the presence of first-order vortices[J]. Physical Review E, 2001, 63(3): 037602.
[160] [160] Lubk A, Guzzinati G, Brrnert F, et al.. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Physical Review Letters, 2013, 111(17): 173902.
Get Citation
Copy Citation Text
Zuo Chao, Chen Qian, Sun Jiasong, Anand Asundi. Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of Intensity Equation: A Review[J]. Chinese Journal of Lasers, 2016, 43(6): 609002
Category: holography and information processing
Received: Jan. 25, 2016
Accepted: --
Published Online: Jun. 6, 2016
The Author Email: Chao Zuo (surpasszuo@163.com)