Acta Photonica Sinica, Volume. 53, Issue 1, 0111004(2024)
Underwater Turbulence Detection Technology Based on Convolutional Neural Networks
[1] MITRA A, PANDA J, WARRIOR H. The effects of free stream turbulence on the hydrodynamic characteristics of an AUV hull form[J]. Ocean Engineering, 174, 148-158(2019).
[2] HUANG C J, MA H, GUO J et al. Calculation of turbulent dissipation rate with acoustic Doppler velocimeter[J]. Limnology and Oceanography: Methods, 16, 265-272(2018).
[3] KLEMA M R, PIRZADO A G, VENAYAGAMOORTHY S K et al. Analysis of acoustic Doppler current profiler mean velocity measurements in shallow flows[J]. Flow Measurement and Instrumentation, 74, 101755(2020).
[4] LUO Jinming, GU Jiawei, LI Junhao et al. Error analysis and improvement of laser speckle interferometry for measuring liquid refractive index[J]. Progress in Laser and Optoelectronics, 59, 0512001(2022).
[5] YI X, LI Z, LIU Z. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 54, 1273-1278(2015).
[6] SUN Shuwei, WANG Hao, WANG Wei et al. Analysis of the impact of temperature and salinity on the imaging quality of optical systems in underwater turbulence[J]. Acta Photonica Sinica, 51, 1211004(2022).
[7] WANG Hantao. Detection of wake turbulent flow field based on double Gaussian Schell mode vortex beam interference[D](2018).
[8] ZHANG Jiarui. Research on underwater turbulence detection based on vortex beam interference characteristics[D](2019).
[9] SHI Pengyu. Research on underwater turbulence detection based on rotational Doppler effect[D](2021).
[10] YANG Tianxing, ZHAO Shengmei. A random phase screen model for ocean turbulence[J]. Acta Optica Sinica, 37, 1201001(2017).
[11] YANG Yi, NIE Huan, WANG Xiaobo et al. Influence of outer scale of ocean turbulence on propagation characteristics of Gaussian beams[J]. Acta Photonica Sinica, 52, 0401002(2023).
[12] WANG X, WANG L, ZHAO S. Research on Hypergeometric-Gaussian vortex beam propagating under oceanic turbulence by theoretical derivation and numerical simulation[J]. Journal of Marine Science and Engineering, 9, 442(2021).
[13] GUO Youxi, HE Yunbo, LIU Rongzhen. Theoretical model and imaging experiment of laser speckle drift phenomenon[J]. College Physics, 40, 78(2021).
[14] ZHU Jingping[M]. Fundamentals of optoelectronics technology(2009).
[15] HE K, ZHANG X, REN S et al. Deep residual learning for image recognition[C](2016).
[16] KAMAL K, YIN Z, WU M et al. Depthwise separable convolution architectures for plant disease classification[J]. Computers and Electronics in Agriculture, 165, 104948(2019).
[17] XU M, ZHANG X L. Depthwise separable convolutional resnet with squeeze-and-excitation blocks for small-footprint keyword spotting[J](2020).
[18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A et al. An image is worth 16x16 words: Transformers for image recognition at scale[J](2020).
[19] ZHONG Y, HUANG B, TANG C. Classification of cassava leaf disease based on a non-balanced dataset using transformer-embedded ResNet[J]. Agriculture, 12, 1360(2022).
[20] ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[J]. Laser Beam Propagation Through Random Media: Second Edition(2005).
Get Citation
Copy Citation Text
Fengtao HE, Qianqian WU, Jianlei ZHANG, Yi YANG, Juan ZHANG, Xinyu YAO, Weilin ZHAO. Underwater Turbulence Detection Technology Based on Convolutional Neural Networks[J]. Acta Photonica Sinica, 2024, 53(1): 0111004
Category:
Received: Jun. 2, 2023
Accepted: Sep. 6, 2023
Published Online: Feb. 1, 2024
The Author Email: Fengtao HE (hefengtao@xupt.edu.cn)