Laser & Optoelectronics Progress, Volume. 57, Issue 10, 101004(2020)

Blur Image Quality Assessment Method Based on Blur Detection Probability Variation

Yuan Zhou1、*, Kai Wang1, Haoxiang Zhang2、**, Wenqiang Xu1, and Long Li1
Author Affiliations
  • 1Inner Mongolia Intelligent Coal Co., Ltd., Ordos, Inner Mongolia 0 17100, China
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less
    Figures & Tables(5)
    Functional block diagram
    Comparison of significant effect diagrams.(a)(b) Original images; (c)(d) effect images after SDSP model extraction
    Binarization of salient maps. (a) Original image; (b) salient map; (c) binarization of salient map
    Effect maps of significant area binarization. (a)-(c) Original images; (d)-(f) salient maps
    • Table 1. Comparison of experimental results

      View table

      Table 1. Comparison of experimental results

      AnamorphosetypeAlgorithmPLCCSROCCOR
      GaussianBlurJNBM0.8390.83680.2471
      CPBD0.91070.91240.1909
      Ref. [8]0.90300.89270.2041
      Proposed0.9130.92310.138
      JPEG2000compressionJNBM0.7190.72550.5022
      CPBD0.88350.78620.326
      Ref. [8]0.75410.80960.5231
      Proposed0.89320.88410.2681
    Tools

    Get Citation

    Copy Citation Text

    Yuan Zhou, Kai Wang, Haoxiang Zhang, Wenqiang Xu, Long Li. Blur Image Quality Assessment Method Based on Blur Detection Probability Variation[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 22, 2019

    Accepted: Oct. 11, 2019

    Published Online: May. 8, 2020

    The Author Email: Yuan Zhou (123384007@qq.com), Haoxiang Zhang (mypython3@163.com)

    DOI:10.3788/LOP57.101004

    Topics