Chinese Journal of Lasers, Volume. 47, Issue 2, 207033(2020)

Antimonene Nanoflakes as a Photoacoustic Imaging Contrast Agent for Tumor in vivo Imaging

Yu Jingwen1, Wang Xiuhong1、*, Feng Jinchao2, Zhang Na2, and Wang Pu1
Author Affiliations
  • 1Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering of Beijing University of Technology, Key Laboratory of Trans-Scale Laser Manufacturing Technology,Ministry of Education, Beijing 100124, China
  • 2College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • show less
    References(65)

    [1] Hahn M A, Singh A K, Sharma P et al. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives[J]. Analytical and Bioanalytical Chemistry, 399, 3-27(2011).

    [2] Michalet X, Pinaud F F, Bentolila L A et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 307, 538-544(2005).

    [3] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [4] Hong G S, Antaris A L, Dai H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 1, 0010(2017).

    [5] Hyun H, Owens E A, Wada H et al. Cartilage-specific near-infrared fluorophores for biomedical imaging[J]. Angewandte Chemie International Edition, 54, 8648-8652(2015).

    [6] Hyun H, Wada H, Bao K et al. Phosphonated near-infrared fluorophores for biomedical imaging of bone[J]. Angewandte Chemie International Edition, 53, 10668-10672(2014).

    [7] Giljohann D A, Seferos D S, Daniel W L et al. Gold nanoparticles for biology and medicine[J]. Angewandte Chemie International Edition, 49, 3280-3294(2010).

    [9] Roca G, Costo R, Rebolledo F et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine[J]. Journal of Physics D: Applied Physics, 42, 224002(2009).

    [10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [11] Larson D R, Zipfel W R, Williams R M et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science, 300, 1434-1436(2003).

    [12] Dutta A, Pal G, Mitra K et al. Fluorescence life time imaging from neurons and subcellular components during low intensity laser therapy using fiber-optic nano-probes[J]. Laser in Surgery and Medicine, 38, 11-11(2006).

    [13] Flusberg B A, Cocker E D, Piyawattanametha W et al. Fiber-optic fluorescence imaging[J]. Nature Methods, 2, 941-950(2005).

    [14] Talley C E, Cooksey G A, Dunn R C. High resolution fluorescence imaging with cantilevered near-field fiber optic probes[J]. Applied Physics Letters, 69, 3809-3811(1996).

    [16] Xiong Q Z, Wang N S, Liu X Y et al. Constrained polarization evolution simplifies depth-resolved retardation measurements with polarization-sensitive optical coherence tomography[J]. Biomedical Optics Express, 10, 5207-5222(2019).

    [17] Correia T, Aguirre J, Sisniega A et al. Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information[J]. Biomedical Optics Express, 2, 2632-2648(2011).

    [18] Correia T, Koch M, Ale A et al. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography: part 2: image reconstruction[J]. Physics in Medicine and Biology, 61, 1452-1475(2016).

    [19] Gaind V, Tsai H R, Webb K J et al. Small animal optical diffusion tomography with targeted fluorescence[J]. Journal of the Optical Society of America A, 30, 1146-1154(2013).

    [20] Milstein A B, Oh S, Webb K J et al. Fluorescence optical diffusion tomography[J]. Applied Optics, 42, 3081-3094(2003).

    [21] Milstein A B, Stott J J, Oh S et al. Fluorescence optical diffusion tomography using multiple-frequency data[J]. Journal of the Optical Society of America A, 21, 1035-1049(2004).

    [22] Milstein A B, Webb K J, Bouman C A. Estimation of kinetic model parameters in fluorescence optical diffusion tomography[J]. Journal of the Optical Society of America A, 22, 1357-1368(2005).

    [23] Pfeiffer F, Weitkamp T, Bunk O et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2, 258-261(2006).

    [24] Wang L B, Frost J D, Lai J S. Three-dimensional digital representation of granular material microstructure from X-ray tomography imaging[J]. Journal of Computing in Civil Engineering, 18, 28-35(2004).

    [25] Kim D, Park S, Lee J H et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 352(2007).

    [26] Wei K, Jayaweera A R, Firoozan S et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion[J]. Circulation, 97, 473-483(1998).

    [27] Yang K, Zhang S, Zhang G X et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 10, 3318-3323(2010).

    [28] Li C H. Wang L H V. Photoacoustic tomography and sensing in biomedicine[J]. Physics in Medicine and Biology, 54, R59-R97(2009).

    [29] Wang L H V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [35] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 3, 503-509(2009).

    [38] Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 29, 1605299(2017).

    [39] Moghimi S M, Hunter A C, Murray J C. Nanomedicine: current status and future prospects[J]. The FASEB Journal, 19, 311-330(2005).

    [40] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nature Reviews Cancer, 5, 161-171(2005).

    [41] Horcajada P, Chalati T, Serre C et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature materials, 9, 172-178(2010).

    [42] Farokhzad O C, Cheng J, Teply B A et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo[J]. Proceedings of the National Academy of Sciences, 103, 6315-6320(2006).

    [44] Li D, Kaner R B. Materials science: graphene-based materials[J]. Science, 320, 1170-1171(2008).

    [45] Stankovich S, Dikin D A. Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 442, 282-286(2006).

    [46] Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons[J]. Nature, 444, 347-349(2006).

    [47] Bunch J S, Verbridge S S et al. Electromechanical resonators from graphene sheets[J]. Science, 315, 490-493(2007).

    [48] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [50] Giovannetti G, Khomyakov P A, Brocks G et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations[J]. Physical Review B, 76, 073103(2007).

    [52] Kou L Z, Chen C F, Smith S C. Phosphorene: fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 6, 2794-2805(2015).

    [53] Ji J, Song X, Liu J et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy[J]. Nature Communications, 7, 13352(2016).

    [54] Zhang S L, Yan Z, Li Y F et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 54, 3112-3115(2015).

    [55] Ares P, Aguilar-Galindo F. Rodríguez-San-Miguel D, et al. Antimonene: mechanical isolation of highly stable antimonene under ambient conditions[J]. Advanced Materials, 28, 6515(2016).

    [56] Gibaja C. Rodriguez-San-Miguel D, Ares P, et al. Few-layer antimonene by liquid-phase exfoliation[J]. Angewandte Chemie International Edition, 55, 14345-14349(2016).

    [57] Keller A A, Wang H T, Zhou D X et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology, 44, 1962-1967(2010).

    [58] Yang S H, Yin G Z. Photoacoustic angiography for mouse brain cortex using near-infrared light[J]. Acta Physica Sinica, 58, 4760-4765(2009).

    [59] Jain P K, Huang X H. El-Sayed I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 41, 1578-1586(2008).

    [60] Agarwal A, Huang S W. O'Donnell M, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging[J]. Journal of Applied Physics, 102, 064701(2007).

    [61] Yang K, Hu L L, Ma X X et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles[J]. Advanced Materials, 24, 1868-1872(2012).

    [62] Zhou C Y, Zeng L, Ji L et al. Research on the thermal conductivities of graphene and graphene based on composite materials[J]. Development and Application of Materials, 25, 94-100(2010).

    [63] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [65] Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect[J]. Advanced Drug Delivery Reviews, 63, 136-151(2011).

    Tools

    Get Citation

    Copy Citation Text

    Yu Jingwen, Wang Xiuhong, Feng Jinchao, Zhang Na, Wang Pu. Antimonene Nanoflakes as a Photoacoustic Imaging Contrast Agent for Tumor in vivo Imaging[J]. Chinese Journal of Lasers, 2020, 47(2): 207033

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Oct. 21, 2019

    Accepted: --

    Published Online: Feb. 21, 2020

    The Author Email: Wang Xiuhong (wxh2012@bjut.edu.cn)

    DOI:10.3788/CJL202047.0207033

    Topics