Journal of Synthetic Crystals, Volume. 51, Issue 5, 881(2022)

Transition Metal Light Elements Compounds Synthesized by High Pressure and High Temperature

YOU Cun, ZHAO Wei, WANG Xin, DONG Shushan, TAO Qiang, and ZHU Pinwen
Author Affiliations
  • [in Chinese]
  • show less
    References(70)

    [1] [1] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials[J]. Science, 2005, 308(5726): 1268-1269.

    [2] [2] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823): 436-439.

    [3] [3] NAGAKUBO A, OGI H, SUMIYA H, et al. Elastic constants of cubic and wurtzite boron nitrides[J]. Applied Physics Letters, 2013, 102(24): 241909.

    [4] [4] MA T, LI H, ZHENG X, et al. Ultrastrong boron frameworks in ZrB12: a highway for electron conducting[J]. Advanced Materials, 2017, 29(3): 1604003.

    [5] [5] MA S L, BAO K, TAO Q, et al. Hardness, magnetic, elastic, and electronic properties of manganese semi-boride synthesized by high pressure and high temperature[J]. Journal of Solid State Chemistry, 2021, 302: 122386.

    [6] [6] CHEN Y L, YU G T, CHEN W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(36): 12370-12373.

    [7] [7] GAN Q, LIU H T, ZHANG S, et al. Robust hydrophobic materials by surface modification in transition-metal diborides[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 58162-58169.

    [8] [8] QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material?[J]. Advanced Materials, 2008, 20(24): 4780-4783.

    [9] [9] SHANG Y C, SHEN F R, HOU X Y, et al. Pressure generation above 35 GPa in a walker-type large-volume press[J]. Chinese Physics Letters, 2020, 37(8): 080701.

    [10] [10] GU Q F, KRAUSS G, STEURER W. Transition metal borides: superhard versus ultra-incompressible[J]. Advanced Materials, 2008, 20(19): 3620-3626.

    [11] [11] GE Y F, BAO K, MA T, et al. Revealing the unusual boron-pinned layered substructure in superconducting hard molybdenum semiboride[J]. ACS Omega, 2021, 6(33): 21436-21443.

    [12] [12] TAO Q, CHEN Y L, LIAN M, et al. Modulating hardness in molybdenum monoborides by adjusting an array of boron zigzag chains[J]. Chemistry of Materials, 2019, 31(1): 200-206.

    [13] [13] TAO Q, ZHAO X P, CHEN Y L, et al. Enhanced Vickers hardness by quasi-3D boron network in MoB2[J]. RSC Advances, 2013, 3(40): 18317.

    [14] [14] ZHAO X B, LI L, BAO K, et al. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(46): 27425-27432.

    [15] [15] HAN L, WANG S M, ZHU J L, et al. Hardness, elastic, and electronic properties of chromium monoboride[J]. Applied Physics Letters, 2015, 106(22): 221902.

    [16] [16] ZHAO X B, LI L, BAO K, et al. Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of β-FeB[J]. Journal of Alloys and Compounds, 2022, 896: 162767.

    [17] [17] GOU H Y, TSIRLIN A A, BYKOVA E, et al. Peierls distortion, magnetism, and high hardness of manganese tetraboride[J]. Physical Review B, 2014, 89(6): 064108.

    [18] [18] TAO Q, ZHENG D F, ZHAO X P, et al. Exploring hardness and the distorted sp2 hybridization of B-B bonds in WB3[J]. Chemistry of Materials, 2014, 26(18): 5297-5302.

    [19] [19] LIANG H, PENG F, GUAN S X, et al. Abnormal physical behaviors of hafnium diboride under high pressure[J]. Applied Physics Letters, 2019, 115(23): 231903.

    [20] [20] CHEN Y, HE D W, QIN J Q, et al. Ultrahigh-pressure densification of nanocrystalline WB ceramics[J]. Journal of Materials Research, 2010, 25(4): 637-640.

    [21] [21] MA S L, FARLA R, BAO K, et al. An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness[J]. Nanoscale, 2021, 13(44): 18570-18577.

    [22] [22] CHEN Y L, YE Y P, TAO Q, et al. Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions[J]. Catalysts, 2021, 11(11): 1265.

    [23] [23] MA S L, BAO K, TAO Q, et al. Double-zigzag boron chain-enhanced Vickers hardness and manganese bilayers-induced high d-electron mobility in Mn3 B4[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(5): 2697-2705.

    [24] [24] MA S L, BAO K, TAO Q, et al. Investigation the origin and mechanical properties of unusual rigid diamond-like net analogues in manganese tetraboride[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 104845.

    [25] [25] YIN S, HE D W, XU C, et al. Hardness and elastic moduli of high pressure synthesized MoB2 and WB2 compacts[J]. High Pressure Research, 2013, 33(2): 409-417.

    [26] [26] MA S L, BAO K, TAO Q, et al. Investigating robust honeycomb borophenes sandwiching manganese layers in manganese diboride[J]. Inorganic Chemistry, 2016, 55(21): 11140-11146.

    [27] [27] MA S L, BAO K, TAO Q, et al. Revealing the unusual rigid boron chain substructure in hard and superconductive tantalum monoboride[J]. Chemistry-A European Journal, 2019, 25(19): 5051-5057.

    [28] [28] WANG W Q, PENG F, LIANG H, et al. Synthesis and sintering of tungsten tetraboride and tantalum-bearing tungsten tetraboride under ultra high temperature and high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105701.

    [29] [29] LIANG H, GUAN S X, LI X, et al. Microstructure evolution, densification behavior and mechanical properties of nano-HfB2 sintered under high pressure[J]. Ceramics International, 2019, 45(6): 7885-7893.

    [30] [30] ZHANG Z G, LIANG H, CHEN H H, et al. Physical properties of high-temperature sintered TaB2 under high pressure[J]. Ceramics International, 2021, 47(7): 9061-9067.

    [32] [32] ZHAO F, TAO Q, YOU C, et al. Enhanced hardness in tungsten-substituted molybdenum diboride solid solutions by local symmetry reduction[J]. Materials Chemistry and Physics, 2020, 251: 123188.

    [33] [33] WANG P, KUMAR R, SANKARAN E M, et al. Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability[J]. Inorganic Chemistry, 2018, 57(3): 1096-1105.

    [34] [34] JUAREZ-ARELLANO E A, WINKLER B, FRIEDRICH A, et al. In situ study of the formation of rhenium borides from the elements at high-(p, T) conditions: extreme incompressibility of Re7B3 and formation of new phases[J]. Solid State Sciences, 2013, 25: 85-92.

    [35] [35] GOU H Y, DUBROVINSKAIA N, BYKOVA E, et al. Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15): 157002.

    [36] [36] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I[J]. Acta Crystallographica, 1955, 8(1): 49-52.

    [37] [37] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. Ⅱ[J]. Acta Crystallographica, 1955, 8(9): 521-524.

    [38] [38] HARTMAN P, BENNEMA P. The attachment energy as a habit controlling factor: i. Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1): 145-156.

    [39] [39] CHEN Y L, RONG J S, WANG Z Z, et al. Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2021, 8(23): 5130-5138.

    [40] [40] MA S L, BAO K, TAO Q, et al. An ultra-incompressible ternary transition metal carbide[J]. RSC Adv, 2014, 4(108): 63544-63548.

    [41] [41] HU Y F, JIA G, MA S L, et al. Hydrogen evolution reaction of γ-Mo0.5W0.5C achieved by high pressure high temperature synthesis[J]. Catalysts, 2016, 6(12): 208.

    [42] [42] GE Y F, SONG H, BAO K, et al. A novel hard superconductor obtained in di-molybdenum carbide (Mo2C) with Mo-C octahedral structure[J]. Journal of Alloys and Compounds, 2021, 881: 160631.

    [43] [43] LI H, MA S L, CHEN L X, et al. Carbon-deficient titanium carbide with highly enhanced hardness[J]. Frontiers in Physics, 2020, 8: 364.

    [44] [44] ZHANG Z G, LIANG H, CHEN H H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature[J]. Inorganic Chemistry, 2020, 59(3): 1848-1852.

    [45] [45] LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature[J]. Inorganic Chemistry, 2021, 60(2): 515-524.

    [46] [46] GUAN S X, LIANG H, WANG Q M, et al. Synthesis and phase stability of the high-entropy carbide (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C under extreme conditions[J]. Inorganic Chemistry, 2021, 60(6): 3807-3813.

    [47] [47] GE Y F, MA S L, BAO K, et al. Superconductivity with high hardness in Mo3C2[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1282-1288.

    [48] [48] ZHAO Z S, CUI L, WANG L M, et al. Bulk Re2C: crystal structure, hardness, and ultra-incompressibility[J]. Crystal Growth & Design, 2010, 10(12): 5024-5026.

    [49] [49] WANG Z W, KOU Z L, ZHANG Y F, et al. Micrometer-sized titanium carbide with properties comparable to those of nanocrystalline counterparts[J]. Journal of Applied Physics, 2019, 125(16): 165901.

    [50] [50] WINKLER B, JUAREZ-ARELLANO E A, FRIEDRICH A, et al. Reaction of titanium with carbon in a laser heated diamond anvil cell and reevaluation of a proposed pressure-induced structural phase transition of TiC[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 392-397.

    [51] [51] SATHISH C I, SHIRAKO Y, TSUJIMOTO Y, et al. Superconductivity of δ-MoC0.75 synthesized at 17 GPa[J]. Solid State Communications, 2014, 177: 33-35.

    [52] [52] ONO S, KIKEGAWA T, OHISHI Y. A high-pressure and high-temperature synthesis of platinum carbide[J]. Solid State Communications, 2005, 133(1): 55-59.

    [53] [53] FENG X K, BAO K, TAO Q, et al. Role of TM-TM connection induced by opposite d-electron states on the hardness of transition-metal (TM=Cr, W) mononitrides[J]. Inorganic Chemistry, 2019, 58(22): 15573-15579.

    [54] [54] WANG S M, GE H, SUN S L, et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications[J]. Journal of the American Chemical Society, 2015, 137(14): 4815-4822.

    [55] [55] WANG S M, GE H, HAN W P, et al. Synthesis of onion-like δ-MoN catalyst for selective hydrogenation[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19451-19460.

    [56] [56] WANG S M, YU X H, LIN Z J, et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides[J]. Chemistry of Materials, 2012, 24(15): 3023-3028.

    [57] [57] FENG X K, BAO K, HUANG Y P, et al. Complete ligand reinforcing the structure of cubic-CrN[J]. Journal of Alloys and Compounds, 2019, 783: 232-236.

    [58] [58] WANG C C, SONG L L, ZOU Y N. Excellent hardness property of bulk MoN fabricated by a novel method[J]. Results in Physics, 2020, 19: 103362.

    [59] [59] MA T, YIN Y Y, HONG F, et al. Magnetic, electronic, and mechanical properties of bulk ε-Fe2N synthesized at high pressures[J]. ACS Omega, 2021, 6(19): 12591-12597.

    [60] [60] ZOU Y, QI X, ZHANG C, et al. Discovery of superconductivity in hard hexagonal ε-NbN[J]. Scientific Reports, 2016, 6: 22330.

    [61] [61] HASEGAWA M, YAGI T. Synthesis of Co2N by a simple direct nitriding reaction between nitrogen and cobalt under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating[J]. Solid State Communications, 2005, 135(5): 294-297.

    [62] [62] SALAMAT A, HECTOR A L, GRAY B M, et al. Synthesis of tetragonal and orthorhombic polymorphs of Hf3N4 by high-pressure annealing of a prestructured nanocrystalline precursor[J]. Journal of the American Chemical Society, 2013, 135(25): 9503-9511.

    [63] [63] FRIEDRICH A, WINKLER B, BAYARJARGAL L, et al. Novel rhenium nitrides[J]. Physical Review Letters, 2010, 105(8): 085504.

    [64] [64] ZERR A, MIEHE G, RIEDEL R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure[J]. Nature Materials, 2003, 2(3): 185-189.

    [65] [65] GUILLAUME C, MORNIROLI J P, FROST D J, et al. Synthesis of hexagonal Ni3N using high pressures and temperatures[J]. Journal of Physics: Condensed Matter, 2006, 18(37): 8651-8660.

    [66] [66] FRIEDRICH A, WINKLER B, JUAREZ-ARELLANO E A, et al. Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations[J]. Materials, 2011, 4(10): 1648-1692.

    [67] [67] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride[J]. Nature Materials, 2004, 3(5): 294-297.

    [68] [68] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2[J]. Physical Review Letters, 2006, 96(15): 155501.

    [69] [69] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765): 1275-1278.

    [70] [70] BINNS J, DONNELLY M E, PEA-ALVAREZ M, et al. Direct reaction between copper and nitrogen at high pressures and temperatures[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 1109-1114.

    [71] [71] LANIEL D, DEWAELE A, GARBARINO G. High pressure and high temperature synthesis of the iron pernitride FeN2[J]. Inorganic Chemistry, 2018, 57(11): 6245-6251.

    Tools

    Get Citation

    Copy Citation Text

    YOU Cun, ZHAO Wei, WANG Xin, DONG Shushan, TAO Qiang, ZHU Pinwen. Transition Metal Light Elements Compounds Synthesized by High Pressure and High Temperature[J]. Journal of Synthetic Crystals, 2022, 51(5): 881

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 16, 2022

    Accepted: --

    Published Online: Jul. 7, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics