Journal of Synthetic Crystals, Volume. 51, Issue 5, 881(2022)
Transition Metal Light Elements Compounds Synthesized by High Pressure and High Temperature
[1] [1] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials[J]. Science, 2005, 308(5726): 1268-1269.
[2] [2] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823): 436-439.
[3] [3] NAGAKUBO A, OGI H, SUMIYA H, et al. Elastic constants of cubic and wurtzite boron nitrides[J]. Applied Physics Letters, 2013, 102(24): 241909.
[4] [4] MA T, LI H, ZHENG X, et al. Ultrastrong boron frameworks in ZrB12: a highway for electron conducting[J]. Advanced Materials, 2017, 29(3): 1604003.
[5] [5] MA S L, BAO K, TAO Q, et al. Hardness, magnetic, elastic, and electronic properties of manganese semi-boride synthesized by high pressure and high temperature[J]. Journal of Solid State Chemistry, 2021, 302: 122386.
[6] [6] CHEN Y L, YU G T, CHEN W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(36): 12370-12373.
[7] [7] GAN Q, LIU H T, ZHANG S, et al. Robust hydrophobic materials by surface modification in transition-metal diborides[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 58162-58169.
[8] [8] QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material?[J]. Advanced Materials, 2008, 20(24): 4780-4783.
[9] [9] SHANG Y C, SHEN F R, HOU X Y, et al. Pressure generation above 35 GPa in a walker-type large-volume press[J]. Chinese Physics Letters, 2020, 37(8): 080701.
[10] [10] GU Q F, KRAUSS G, STEURER W. Transition metal borides: superhard versus ultra-incompressible[J]. Advanced Materials, 2008, 20(19): 3620-3626.
[11] [11] GE Y F, BAO K, MA T, et al. Revealing the unusual boron-pinned layered substructure in superconducting hard molybdenum semiboride[J]. ACS Omega, 2021, 6(33): 21436-21443.
[12] [12] TAO Q, CHEN Y L, LIAN M, et al. Modulating hardness in molybdenum monoborides by adjusting an array of boron zigzag chains[J]. Chemistry of Materials, 2019, 31(1): 200-206.
[13] [13] TAO Q, ZHAO X P, CHEN Y L, et al. Enhanced Vickers hardness by quasi-3D boron network in MoB2[J]. RSC Advances, 2013, 3(40): 18317.
[14] [14] ZHAO X B, LI L, BAO K, et al. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(46): 27425-27432.
[15] [15] HAN L, WANG S M, ZHU J L, et al. Hardness, elastic, and electronic properties of chromium monoboride[J]. Applied Physics Letters, 2015, 106(22): 221902.
[16] [16] ZHAO X B, LI L, BAO K, et al. Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of β-FeB[J]. Journal of Alloys and Compounds, 2022, 896: 162767.
[17] [17] GOU H Y, TSIRLIN A A, BYKOVA E, et al. Peierls distortion, magnetism, and high hardness of manganese tetraboride[J]. Physical Review B, 2014, 89(6): 064108.
[18] [18] TAO Q, ZHENG D F, ZHAO X P, et al. Exploring hardness and the distorted sp2 hybridization of B-B bonds in WB3[J]. Chemistry of Materials, 2014, 26(18): 5297-5302.
[19] [19] LIANG H, PENG F, GUAN S X, et al. Abnormal physical behaviors of hafnium diboride under high pressure[J]. Applied Physics Letters, 2019, 115(23): 231903.
[20] [20] CHEN Y, HE D W, QIN J Q, et al. Ultrahigh-pressure densification of nanocrystalline WB ceramics[J]. Journal of Materials Research, 2010, 25(4): 637-640.
[21] [21] MA S L, FARLA R, BAO K, et al. An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness[J]. Nanoscale, 2021, 13(44): 18570-18577.
[22] [22] CHEN Y L, YE Y P, TAO Q, et al. Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions[J]. Catalysts, 2021, 11(11): 1265.
[23] [23] MA S L, BAO K, TAO Q, et al. Double-zigzag boron chain-enhanced Vickers hardness and manganese bilayers-induced high d-electron mobility in Mn3 B4[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(5): 2697-2705.
[24] [24] MA S L, BAO K, TAO Q, et al. Investigation the origin and mechanical properties of unusual rigid diamond-like net analogues in manganese tetraboride[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 104845.
[25] [25] YIN S, HE D W, XU C, et al. Hardness and elastic moduli of high pressure synthesized MoB2 and WB2 compacts[J]. High Pressure Research, 2013, 33(2): 409-417.
[26] [26] MA S L, BAO K, TAO Q, et al. Investigating robust honeycomb borophenes sandwiching manganese layers in manganese diboride[J]. Inorganic Chemistry, 2016, 55(21): 11140-11146.
[27] [27] MA S L, BAO K, TAO Q, et al. Revealing the unusual rigid boron chain substructure in hard and superconductive tantalum monoboride[J]. Chemistry-A European Journal, 2019, 25(19): 5051-5057.
[28] [28] WANG W Q, PENG F, LIANG H, et al. Synthesis and sintering of tungsten tetraboride and tantalum-bearing tungsten tetraboride under ultra high temperature and high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105701.
[29] [29] LIANG H, GUAN S X, LI X, et al. Microstructure evolution, densification behavior and mechanical properties of nano-HfB2 sintered under high pressure[J]. Ceramics International, 2019, 45(6): 7885-7893.
[30] [30] ZHANG Z G, LIANG H, CHEN H H, et al. Physical properties of high-temperature sintered TaB2 under high pressure[J]. Ceramics International, 2021, 47(7): 9061-9067.
[32] [32] ZHAO F, TAO Q, YOU C, et al. Enhanced hardness in tungsten-substituted molybdenum diboride solid solutions by local symmetry reduction[J]. Materials Chemistry and Physics, 2020, 251: 123188.
[33] [33] WANG P, KUMAR R, SANKARAN E M, et al. Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability[J]. Inorganic Chemistry, 2018, 57(3): 1096-1105.
[34] [34] JUAREZ-ARELLANO E A, WINKLER B, FRIEDRICH A, et al. In situ study of the formation of rhenium borides from the elements at high-(p, T) conditions: extreme incompressibility of Re7B3 and formation of new phases[J]. Solid State Sciences, 2013, 25: 85-92.
[35] [35] GOU H Y, DUBROVINSKAIA N, BYKOVA E, et al. Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15): 157002.
[36] [36] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I[J]. Acta Crystallographica, 1955, 8(1): 49-52.
[37] [37] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. Ⅱ[J]. Acta Crystallographica, 1955, 8(9): 521-524.
[38] [38] HARTMAN P, BENNEMA P. The attachment energy as a habit controlling factor: i. Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1): 145-156.
[39] [39] CHEN Y L, RONG J S, WANG Z Z, et al. Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2021, 8(23): 5130-5138.
[40] [40] MA S L, BAO K, TAO Q, et al. An ultra-incompressible ternary transition metal carbide[J]. RSC Adv, 2014, 4(108): 63544-63548.
[41] [41] HU Y F, JIA G, MA S L, et al. Hydrogen evolution reaction of γ-Mo0.5W0.5C achieved by high pressure high temperature synthesis[J]. Catalysts, 2016, 6(12): 208.
[42] [42] GE Y F, SONG H, BAO K, et al. A novel hard superconductor obtained in di-molybdenum carbide (Mo2C) with Mo-C octahedral structure[J]. Journal of Alloys and Compounds, 2021, 881: 160631.
[43] [43] LI H, MA S L, CHEN L X, et al. Carbon-deficient titanium carbide with highly enhanced hardness[J]. Frontiers in Physics, 2020, 8: 364.
[44] [44] ZHANG Z G, LIANG H, CHEN H H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature[J]. Inorganic Chemistry, 2020, 59(3): 1848-1852.
[45] [45] LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature[J]. Inorganic Chemistry, 2021, 60(2): 515-524.
[46] [46] GUAN S X, LIANG H, WANG Q M, et al. Synthesis and phase stability of the high-entropy carbide (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C under extreme conditions[J]. Inorganic Chemistry, 2021, 60(6): 3807-3813.
[47] [47] GE Y F, MA S L, BAO K, et al. Superconductivity with high hardness in Mo3C2[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1282-1288.
[48] [48] ZHAO Z S, CUI L, WANG L M, et al. Bulk Re2C: crystal structure, hardness, and ultra-incompressibility[J]. Crystal Growth & Design, 2010, 10(12): 5024-5026.
[49] [49] WANG Z W, KOU Z L, ZHANG Y F, et al. Micrometer-sized titanium carbide with properties comparable to those of nanocrystalline counterparts[J]. Journal of Applied Physics, 2019, 125(16): 165901.
[50] [50] WINKLER B, JUAREZ-ARELLANO E A, FRIEDRICH A, et al. Reaction of titanium with carbon in a laser heated diamond anvil cell and reevaluation of a proposed pressure-induced structural phase transition of TiC[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 392-397.
[51] [51] SATHISH C I, SHIRAKO Y, TSUJIMOTO Y, et al. Superconductivity of δ-MoC0.75 synthesized at 17 GPa[J]. Solid State Communications, 2014, 177: 33-35.
[52] [52] ONO S, KIKEGAWA T, OHISHI Y. A high-pressure and high-temperature synthesis of platinum carbide[J]. Solid State Communications, 2005, 133(1): 55-59.
[53] [53] FENG X K, BAO K, TAO Q, et al. Role of TM-TM connection induced by opposite d-electron states on the hardness of transition-metal (TM=Cr, W) mononitrides[J]. Inorganic Chemistry, 2019, 58(22): 15573-15579.
[54] [54] WANG S M, GE H, SUN S L, et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications[J]. Journal of the American Chemical Society, 2015, 137(14): 4815-4822.
[55] [55] WANG S M, GE H, HAN W P, et al. Synthesis of onion-like δ-MoN catalyst for selective hydrogenation[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19451-19460.
[56] [56] WANG S M, YU X H, LIN Z J, et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides[J]. Chemistry of Materials, 2012, 24(15): 3023-3028.
[57] [57] FENG X K, BAO K, HUANG Y P, et al. Complete ligand reinforcing the structure of cubic-CrN[J]. Journal of Alloys and Compounds, 2019, 783: 232-236.
[58] [58] WANG C C, SONG L L, ZOU Y N. Excellent hardness property of bulk MoN fabricated by a novel method[J]. Results in Physics, 2020, 19: 103362.
[59] [59] MA T, YIN Y Y, HONG F, et al. Magnetic, electronic, and mechanical properties of bulk ε-Fe2N synthesized at high pressures[J]. ACS Omega, 2021, 6(19): 12591-12597.
[60] [60] ZOU Y, QI X, ZHANG C, et al. Discovery of superconductivity in hard hexagonal ε-NbN[J]. Scientific Reports, 2016, 6: 22330.
[61] [61] HASEGAWA M, YAGI T. Synthesis of Co2N by a simple direct nitriding reaction between nitrogen and cobalt under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating[J]. Solid State Communications, 2005, 135(5): 294-297.
[62] [62] SALAMAT A, HECTOR A L, GRAY B M, et al. Synthesis of tetragonal and orthorhombic polymorphs of Hf3N4 by high-pressure annealing of a prestructured nanocrystalline precursor[J]. Journal of the American Chemical Society, 2013, 135(25): 9503-9511.
[63] [63] FRIEDRICH A, WINKLER B, BAYARJARGAL L, et al. Novel rhenium nitrides[J]. Physical Review Letters, 2010, 105(8): 085504.
[64] [64] ZERR A, MIEHE G, RIEDEL R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure[J]. Nature Materials, 2003, 2(3): 185-189.
[65] [65] GUILLAUME C, MORNIROLI J P, FROST D J, et al. Synthesis of hexagonal Ni3N using high pressures and temperatures[J]. Journal of Physics: Condensed Matter, 2006, 18(37): 8651-8660.
[66] [66] FRIEDRICH A, WINKLER B, JUAREZ-ARELLANO E A, et al. Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations[J]. Materials, 2011, 4(10): 1648-1692.
[67] [67] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride[J]. Nature Materials, 2004, 3(5): 294-297.
[68] [68] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2[J]. Physical Review Letters, 2006, 96(15): 155501.
[69] [69] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765): 1275-1278.
[70] [70] BINNS J, DONNELLY M E, PEA-ALVAREZ M, et al. Direct reaction between copper and nitrogen at high pressures and temperatures[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 1109-1114.
[71] [71] LANIEL D, DEWAELE A, GARBARINO G. High pressure and high temperature synthesis of the iron pernitride FeN2[J]. Inorganic Chemistry, 2018, 57(11): 6245-6251.
Get Citation
Copy Citation Text
YOU Cun, ZHAO Wei, WANG Xin, DONG Shushan, TAO Qiang, ZHU Pinwen. Transition Metal Light Elements Compounds Synthesized by High Pressure and High Temperature[J]. Journal of Synthetic Crystals, 2022, 51(5): 881
Category:
Received: Feb. 16, 2022
Accepted: --
Published Online: Jul. 7, 2022
The Author Email:
CSTR:32186.14.