Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2015005(2023)

Improved YOLOv5-Based Defect Detection in Photovoltaic Modules

Lan Guo1,2,3 and Zhengxin Liu1,2,3、*
Author Affiliations
  • 1Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Research Center for Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(13)
    Different forms of defects in PV modules. (a) Micro-crack in polycrystalline silicon; (b) micro-crack in monocrystalline silicon; (c) finger-interruption; (d) break and black-zone
    Experimental results of EL image segmentation. (a) EL image of a PV module; (b) EL subimage in row 1 and column 5
    Network structure of the improved YOLOv5 algorithm
    Schematic of Ghost convolution module
    Schematic of the SE attention convolution module
    Schematic of BiFPN
    Trend chart of results during training
    Comparison of the detection performance for different kinds of defects. (a) Confusion matrix; (b) P-R curve
    Visualisation of the highest-level feature maps by class activation mapping (grad-CAM) before and after algorithm improvement
    Visual presentation of partial test results
    • Table 1. Details of defect labelling in the dataset

      View table

      Table 1. Details of defect labelling in the dataset

      Dataset typeData categoryNumber of picturesNumber of bounding boxes
      Black zoneCrackInactiveFinger interruption
      Public datasetAugmented dataset for training19101290122282736786
      Augmented dataset for validation478
      Private datasetDataset for test576Unlabelled
    • Table 2. Results of the ablation experiment

      View table

      Table 2. Results of the ablation experiment

      ModelPrecision for different defectsPrecision of allRecallmAP@0.5Model size /106
      CrackInactiveBlack-zoneFinger-interruption
      Baseline0.9520.9850.9100.9370.9460.9100.95016.1
      GhostNet0.9050.9620.9090.9320.9270.9000.93812.2
      GhostNet-SE0.9530.9730.8970.9380.9410.8860.94312.6
      GhostNet-BiFPN0.9270.9730.9010.9370.9350.8880.93912.4
      GhostNet-SE-BiFPN0.9560.9760.9210.9570.9520.8800.94312.7
    • Table 3. Performance comparison with mainstream models

      View table

      Table 3. Performance comparison with mainstream models

      ModelmAP@.5F1 scoreModel size /MBConsuming time /ms
      With GPUout GPU
      YOLOv30.9800.984127.645.4988.4
      YOLOv3-tiny0.8640.83017.97.5137.4
      YOLOv5(Baseline)0.9500.94616.119.9164.5
      YOLOv70.9490.93074.817.6705.5
      Proposed algorithm0.9430.95212.722.2135.8
    Tools

    Get Citation

    Copy Citation Text

    Lan Guo, Zhengxin Liu. Improved YOLOv5-Based Defect Detection in Photovoltaic Modules[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2015005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 24, 2022

    Accepted: Dec. 22, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Zhengxin Liu (z.x.liu@mail.sim.ac.cn)

    DOI:10.3788/LOP223155

    Topics