Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3849(2024)
Preparation and Formaldehyde Sensing Properties of WS2-CdSnO3 Composite Materials
[1] [1] IM D, KIM D, JEONG D, et al. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform[J]. J Mater SciTechnol, 2020, 38: 56-63.
[2] [2] TAKIGAWA T, WANG B L, SAIJO Y, et al. Relationship between indoor chemical concentrations and subjective symptoms associated with sick building syndrome in newly built houses in Japan[J]. Int Arch Occup Environ Health, 2010, 83(2): 225-235.
[3] [3] HU Q M, MA Z H, YANG J, et al. Ultrathin PANI-decorated, highly purified and well dispersed array cncs for highly sensitive HCHO sensors[J]. Chemosensors, 2021, 9(10): 276.
[4] [4] MENG D, QIAO T T, WANG G S, et al. Rational design of CuO/In2O3heterostructures with flower-like structures for low temperature detection of formaldehyde[J]. J Alloys Compd, 2022, 896: 162959.
[5] [5] SUN D, WANG W, ZHANG N, et al. G-C3N4/In2O3 composite for effective formaldehyde detection[J]. Sens Actuators B: Chem, 2022, 358: 131414.
[6] [6] JIA X H, FAN H Q, LOU X D, et al. Synthesis and gas sensing properties of perovskite CdSnO3 nanoparticles[J]. Appl Phys A, 2009, 94(4): 837-841.
[7] [7] SUN J B, ZHANG H X, LIU X, et al. Porous CdSnO3nanocubics synthesized under suitable pH value for targeted H2S detection[J]. Sens Actuators A: Phys, 2022, 336: 113408.
[8] [8] JHA R K, BHAT N. Recent progress in chemiresistive gas sensing technology based on molybdenum and tungsten chalcogenide nanostructures[J]. Adv Mater Inter, 2020, 7(7): 1901992.
[9] [9] SUN Y J, WANG B, LIU S W, et al. WS2 quantum dots modified In2O3 hollow hexagonal prisms for conductometric NO2 sensing at room-temperature[J]. Sens Actuators B: Chem, 2023, 380: 133341.
[11] [11] SAKHUJA N, JHA R K, BHAT N. Tungsten disulphidenanosheets for high-performance chemiresistive ammonia gas sensor[J]. IEEE Sens J, 2019, 19(24): 11767-11774.
[13] [13] MEENA D, BHATNAGAR M C, SINGH B. Synthesis, characterization and gas sensing properties of the rhombohedral ilmenite CdSnO3 nanoparticles[J]. Phys B Condens Matter, 2020, 578: 411848.
[14] [14] FENG Z, WEN J Y, MENG F Z, et al. In situ-polymerized PANI/WS2nanocomposites for highly sensitive flexible ammonia gas sensors and respiration monitoring devices[J]. ACS Appl Nano Mater, 2024, 7(3): 3385-3393.
[15] [15] ROY A, DAS P P, SELVARAJ P, et al. Template free synthesis of CdSnO3 micro-cuboids for dye sensitized solar cells[J]. J Photochem Photobiol AChem, 2019, 380: 111824.
[16] [16] S B S, ZITO C A, PERFECTO T M, et al. Porous ZnSnO3 nanocubes as a triethyla mine sensor[J]. Sens Actuators B: Chem, 2021, 338: 129869.
[17] [17] HUO N J, LI Y, KANG J, et al. Edge-states ferromagnetism of WS2 nanosheets[J]. Appl Phys Lett, 2014, 104(20): 202406.
[18] [18] KIM J H, KIM J Y, MIRZAEI A, et al. Synergistic effects of SnO2 and Au nanoparticles decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing[J]. Sens Actuators B: Chem, 2021, 332: 129493.
[19] [19] WANG S C, WANG X H, QIAO G Q, et al. Core-double shell ZnO@In2O3@ZnO hollow microspheres for superior ethanol gas sensing[J]. Sens Actuators B: Chem, 2021, 341: 130002.
[20] [20] GAO Y F, WANG X H, ZHANG Q B, et al. Influence of La doping on the ethanol gas sensing properties of CdSnO3 micro-cubes[J]. Sens Actuators B: Chem, 2023, 394: 134447.
[21] [21] OKAI AMU-DARKO J N, HUSSAIN S, ZHANG X Z, et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor[J]. Chemosphere, 2023, 314: 137670.
[23] [23] ZHANG Y, LIU N, BU W Y, et al. Au modified Nd-doped In2O3 hollow microspheres for high performance triethyla mine gas sensor[J]. Vacuum, 2023, 214: 112240.
[24] [24] TOMER V K, DUHAN S, SHARMA A K, et al. One pot synthesis of mesoporous ZnO-SiO2 nanocomposite as high performance humidity sensor[J]. Colloids Surf A Physicochem Eng Aspects, 2015, 483: 121-128.
[25] [25] NADARGI D Y, DATEER R B, TAMBOLI M S, et al. A greener approach towards the development of graphene-Ag loaded ZnO nanocomposites for acetone sensing applications[J]. RSC Adv, 2019, 9(58): 33602-33606.
[26] [26] MEHTA S S, NADARGI D Y, TAMBOLI M S, et al. Ru-Loaded mesoporous WO3 microflowers for dual applications: Enhanced H2S sensing and sunlight-driven photocatalysis[J]. Dalton Trans, 2018, 47(47): 16840-16845.
[27] [27] XU K, DUAN S L, TANG Q, et al. P-N heterointerface-determined acetone sensing characteristics of -MoO3@NiO core@shellnanobelts[J]. CrystEngComm, 2019, 21(38): 5834-5844.
[28] [28] ZHANG C, HUAN Y C, LI Y, et al. Low concentration isopropanol gas sensing properties of Ag nanoparticles decorated In2O3 hollow spheres[J]. J Adv Ceram, 2022, 11(3): 379-391.
[29] [29] YANG H Y, ZHOU R, SUN Y J, et al. Optimization and gas sensing properties of Au nanoparticle modified -Fe2O3 nanodisk structures for highly sensitive acetone detection[J]. New J Chem, 2020, 44(37): 16174-16184.
[30] [30] CAI H J, LUO N, HU Q M, et al. Multishell SnO2 hollow microspheres loaded with bimetal PdPt nanoparticles for ultrasensitive and rapid formaldehyde MEMS sensors[J]. ACS Sens, 2022, 7(5): 1484-1494.
[31] [31] OU Y C, WANG S Y, ZHAI L Y, et al. Moisture reaction mechanism of Au-modified SnO2 ultrathin nanosheets with exclusive detection of formaldehyde[J]. Sens Actuators B: Chem, 2024, 412: 135801.
[32] [32] AKHTAR A, WEN H R, CHU X F, et al. Synthesis of g-C3N4-Zn2SnO4 nanocomposites with enhanced sensing performance to ethanol vapor[J]. Synth Met, 2021, 278: 116829.
Get Citation
Copy Citation Text
LIU Xingxing, HU Mengting, LIU Cuicui, LI Jiahao, CHU Xiangfeng, LIANG Shiming. Preparation and Formaldehyde Sensing Properties of WS2-CdSnO3 Composite Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3849
Category:
Received: Mar. 6, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: CHU Xiangfeng (xfchu99@ahut.edu.cn)