Chinese Journal of Lasers, Volume. 43, Issue 7, 703001(2016)
Influence of Overlapping Rate of Focused Femtosecond Laser Spot on the Silicon Surfaces Colorization
[1] [1] Chen R, Ng K W, Ko W S, et al.. Nanophotonic integrated circuits from nanoresonators grown on silicon[J]. Nat Commun, 2014, 5: 4325.
[2] [2] Agnese R, Ahmed Z, Anderson A J, et al.. Silicon detector dark matter results from the final exposure of CDMS II[J]. Phys Rev Lett, 2013, 111(25): 251301.
[3] [3] Huang Z, Carey J E, Liu M, et al.. Microstructured silicon photodetector[J]. Appl Phys Lett, 2006, 89(3): 3506.
[4] [4] Waits C M, Modafe A, Ghodssi R. Investigation of gray-scale technology for large area 3D silicon MEMS structures[J]. J Micromech Microeng, 2003, 13(2): 170.
[5] [5] Zhang M, Ren Y, Cheng D, et al.. Solar cell performance improvement via photoluminescence conversion of Si nanoparticles[J]. Chin Opt Lett, 2012, 10(6): 063101.
[6] [6] He Z, Zhong C, Su S, et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat Photonics, 2012, 6(9): 591-595.
[7] [7] Mei H, Wang C, Yao J, et al.. Development of novel flexible black silicon[J]. Opt Commun, 2011, 284(4): 1072-1075.
[8] [8] Stubenrauch M, Fischer M, Kremin C, et al.. Black silicon-new functionalities in microsystems[J]. J Micromech Microeng, 2006, 16(6): S82.
[9] [9] Petkie R, Dibachi R, Leising B, et al.. Solar cell with colorization layer: U.S. 12/060,012[P]. 2008-3-31.
[10] [10] Benemann J, Chehab O, Schaar-Gabriel E. Building-integrated PV modules[J]. Sol Energ Mat Sol C, 2001, 67(1): 345-354.
[11] [11] Henson J. Integrating BIPV: How the market for building integrated photovoltaics is being created in the USA[J]. Refocus, 2005, 6(3): 28-30.
[12] [12] Norton B, Eames P C, Mallick T K, et al.. Enhancing the performance of building integrated photovoltaics[J]. Sol Energy, 2011, 85(8): 1629-1664.
[13] [13] Wu Dongjiang, Zhou Siyu, Ma Guangyi, et al.. Experiment of quartz glass flute precise thinning by femtosecond laser[J]. Chinese J Lasers, 2015, 42(3): 0303009.
[14] [14] Chen Zhifeng, Zhang Bingzhi, Chen Daxin, et al.. Ultrafast magnetization precession in FePt film induced and probed by femtosecond laser[J]. Chinese J Lasers, 2015, 42(s1): s107001.
[15] [15] Wang Haozhu, Yang Fenghe, Yang Fan, et al.. Investigation of femtosecond-laser induced periodic surface structure on molybdenum[J]. Chinese J Lasers, 2015, 42(1): 0103001.
[16] [16] Long Jiangyou, Wu Yingchao, Gong Dingwei, et al.. Femtosecond laser fabricated superhydrophobic copper surface sand their anti-icing properties[J]. Chinese J Lasers, 2015, 42(7): 0706002.
[18] [18] Vorobyev A Y, Guoa C. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914.
[19] [19] Yao J, Zhang C, Liu H, et al.. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses[J]. Appl Surf Sci, 2012, 258(19): 7625-7632.
[20] [20] Tobias I, El Moussaoni A, Luque A. Colored solar cells with minimal current mismatch[J]. IEEE T Electron Dev, 1999, 46(9): 1858-1865.
[21] [21] Li M, Zeng L, Chen Y, et al.. Realization of colored multicrystalline silicon solar cells with SiO2/SiNx:H double layer antireflection coatings [J]. Int J Photoenergy, 2013: 1-8.
[22] [22] Selj J H, Mongstad T T, Sondena R, et al.. Reduction of optical losses in colored solar cells with multilayer antireflection coatings[J]. Sol Energ Mat Sol C, 2011, 95(9): 2576-2582.
[23] [23] Ionin A A, Kudryashov S I, Makarov S V, et al.. Femtosecond laser color marking of metal and semiconductor surfaces[J]. Appl Phys A, 2012, 107(2): 301-305.
[24] [24] Yang H D, Li X H, Li G Q, et al.. Formation of colorized silicon by femtosecond laser pulses in different background gases[J]. Appl Phys A, 2011, 104(2): 749-753.
[25] [25] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances[J]. Prog Quant Electron, 2014, 38(3): 119-156.
[26] [26] Sipe J E, Young J F, Preston J S, et al.. Laser-induced periodic surface structure. I. Theory[J]. Phys Rev B, 1983, 27(2): 1141.
[27] [27] Young J F, Preston J, Van Driel H, et al.. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass[J]. Phys Rev B, 1983, 27(2): 1155.
[28] [28] Huang M, Zhao F, Cheng Y, et al.. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser[J]. Acs Nano, 2009, 3(12): 4062-4070.
[29] [29] Dusser B, Sagan Z, Soder H, et al.. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Opt Express, 2010, 18(3): 2913-2924.
[30] [30] Zhao Q Z, Malzer S, Wang L J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Opt Lett, 2007, 32(13): 1932-1934.
Get Citation
Copy Citation Text
Bai Feng, Fan Wenzhong, Li Yangbo, Pan Huaihai, Li Hongjin, Zhao Quanzhong. Influence of Overlapping Rate of Focused Femtosecond Laser Spot on the Silicon Surfaces Colorization[J]. Chinese Journal of Lasers, 2016, 43(7): 703001
Category: materials and thin films
Received: Jan. 5, 2016
Accepted: --
Published Online: Jul. 13, 2016
The Author Email: Feng Bai (fbai@siom.ac.cn)