Optics and Precision Engineering, Volume. 32, Issue 18, 2823(2024)
3D point cloud classification and segmentation based on dual attention and weighted dynamic graph convolution
[1] SU H, MAJI S, KALOGERAKIS E et al. Multi-view convolutional neural networks for 3D shape recognition[C], 945-953(2015).
[2] MATURANA D, SCHERER S. Voxnet: a 3D convolutional neural network for real-time object recognition[C], 922-928(2015).
[3] RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C], 6620-6629(2017).
[4] WANG P S, LIU Y, GUO Y X et al. O-CNN[J]. ACM Transactions on Graphics, 36, 1-11(2017).
[5] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).
[6] QI C R, YI L, SU H et al. Pointnet++: deep hierar-chical feature learning on point sets in a metric spa-ce[J]. Advances in Neural Information Processing Systems, 30, 5099-5108(2017).
[7] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).
[8] HU Q Y, YANG B, XIE L H et al. RandLA-net: efficient semantic segmentation of large-scale point clouds[C], 11105-11114(2020).
[9] THOMAS H, QI C R, DESCHAUD J E et al. KPConv: flexible and deformable convolution for point clouds[C], 6410-6419(2019).
[10] [10] 杨军, 王连甲. 结合位置关系卷积与深度残差网络的三维点云识别与分割[J]. 西安交通大学学报, 2023, 57(5): 182-193.YANGJ, WANGL J. Recognition and segmentation of 3D point cloud through positional relation convolution in combination with deep residual network[J]. Journal of Xi'an Jiaotong University, 2023, 57(5): 182-193.(in Chinese)
[11] ZHAO H S, JIANG L, FU C W et al. PointWeb: enhancing local neighborhood features for point cloud processing[C], 5560-5568(2019).
[12] [12] 王江安, 何娇, 庞大为. 基于动态图卷积网络的点云分类和分割网络[J]. 激光与光电子学进展, 2021, 58(12): 1215008.WANGJ A, HEJ, PANGD W. Point cloud classification and segmentation network based on dynamic graph convolutional network[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1215008.(in Chinese)
[13] [13] 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(19): 106-113.SHENL, YANGJ Z, ZHOUG Q, et al. Point cloud classification segmentation model based on self-attention and edge convolution[J]. Computer Engineering and Applications, 2023, 59(19): 106-113.(in Chinese)
[14] [14] 杨军,李博赞. 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J].光学 精密工程,2022,30(7):840-853. doi: 10.37188/OPE.20223007.0840YANGJ,LIB Z. Semantic segmentation of 3D point cloud based on self-attention feature fusion groupco-nvolutional neural network[J]. Opt. Precision Eng.,2022,30(7):840-853.(in Chinese). doi: 10.37188/OPE.20223007.0840
[15] CHEN Y J, YANG Z L, ZHENG X W et al. Pointformer: a dual perception attention-based network for point cloud classification[C], 432-449(2023).
[16] YANG Z L, CHEN Y J, ZHENG X W et al. Conditional GAN for point cloud generation[C], 117-133(2023).
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation Networks[C], 7132-7141(2018).
[18] WU Z R, SONG S R, KHOSLA A et al. 3D ShapeNets: a deep representation for volumetric shapes[C], 1912-1920(2015).
[19] YI L, KIM V G, CEYLAN D et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 35, 1-12(2016).
[20] [20] 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(8): 182-191. doi: 10.3778/j.issn.1002-8331.2112-0412LANH, CHENH, ZHANGP F. Point cloud classification and segmentation model based on graph convolution and 3D direction convolution[J]. Computer Engineering and Applications, 2023, 59(8): 182-191.(in Chinese). doi: 10.3778/j.issn.1002-8331.2112-0412
[21] ZHAO H S, JIANG L, JIA J Y et al. Point transformer[C], 16239-16248(2021).
[22] [22] 梁正友, 蔡俊民, 孙宇, 等. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37-48.LIANGZ Y, CAIJ M, SUNY, et al. Point cloud classification based on residual dynamic graph convolution and feature enhancement[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(5): 37-48.(in Chinese)
[23] WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C], 9613-9622(2019).
[24] YAN X, ZHENG C D, LI Z et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C], 5588-5597(2020).
[25] XU Y F, FAN T Q, XU M Y et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C], 90-105(2018).
[26] HAN X F, JIN Y F, CHENG H X et al. Dual transformer for point cloud analysis[J]. IEEE Transactions on Multimedia, 25, 5638-5648(2022).
[27] LIN Z H, HUANG S Y, WANG Y C F. Convolution in The Cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C], 1797-1806(2020).
Get Citation
Copy Citation Text
Jian XIAO, Xiaohong WANG, Wei LI, Yifei YANG, Ji LUO. 3D point cloud classification and segmentation based on dual attention and weighted dynamic graph convolution[J]. Optics and Precision Engineering, 2024, 32(18): 2823
Category:
Received: Jan. 25, 2024
Accepted: --
Published Online: Nov. 18, 2024
The Author Email: Xiaohong WANG (xhwang@gzu.edu.cn)