Infrared Technology, Volume. 44, Issue 9, 889(2022)

Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction

Zhengchao CHEN1,2, Libin TANG2,3、*, Qun HAO1, Shanli WANG2, Jisheng ZHUANG2, Jincheng KONG2, Wenbin ZUO2,3, and Rongbin JI2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(86)

    [5] [5] Klipstein P. “XBn” barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, 2008, 6940: 69402U.

    [6] [6] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation[J]. Optical Engineering, 2015, 54(10): 105105.

    [7] [7] Klipstein P, Klin O, Grossman S, et al. XBn barrier detectors for high operating temperatures[C]// Proc. of SPIE, 2010, 7608: 76081V.

    [8] [8] Martyniuk P, Rogalski A. Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 211-220.

    [9] [9] YE Z H, CHEN Y Y, ZHANG P, et al. Modeling of LWIR nBn HgCdTe photodetector[C]// Proc. of SPIE, 2014, 9070: 90701L.

    [13] [13] Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.

    [15] [15] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]// Proc. of SPIE, 2014, 9070: 90701D.

    [18] [18] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109.

    [19] [19] Klipstein P, Aronov D, Berkowicz E, et al. Reducing the cooling requirements of mid-wave IR detector arrays[J]. SPIE Newsroom, 2011, Doi: 10.1117/2.1201111.003919.

    [20] [20] LEI L, LI L, YEH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102.

    [21] [21] Rabiee Golgir H, Ghandiparsi S, Devine E P, et al. Ultra-thin super absorbing photon trapping materials for high-performance infrared detection[C]// Proc. of SPIE, 2019, 11002: 110020T.

    [22] [22] Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]// Proc. of SPIE, 1985, 572: 123.

    [23] [23] Kopytko M, K.b.owski A, Gawron W, et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD[J]. Opto-Electronics Review, 2013, 21(4): 151109.

    [24] [24] White A. Infrared Detectors [P]. U.S.: Patent 4,679,063, [1983-09-22].

    [25] [25] Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same [P]. U.S.: Patent 7,795,640 B2, [2004-06-28].

    [26] [26] Kopytko M, Rogalski A. HgCdTe barrier infrared detectors[J]. Progress in Quantum Electronics, 2016, 47(12): 1-18.

    [27] [27] Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors[J]. Opto-Electronics Review, 2014, 22(2): 1624.

    [28] [28] Rogalski A, Martyniuk P. Mid-wavelength Infrared nBn for HOT Detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.

    [29] [29] Pedrazzani J R, Maimon S, Wicks G W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[J]. Applied Physics Letters, 2008, 44(25): 1487.

    [30] [30] Savich G R, Pedrazzani J R, Sidor D E, et al. Benefits and limitations of unipolar barriers in infrared photodetectors[J]. Infrared Physics & Technology, 2013, 59: 152-155.

    [31] [31] Sidor D E, Savich G R, Wicks G W. Surface leakage mechanisms in III-V infrared barrier detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4663-4667.

    [32] [32] Rogalski A. Next decade in infrared detectors[C]// Proc. of SPIE, 2017, 10433: 104330L.

    [33] [33] Savich G R, Pedrazzani J R, Maimon S, et al. Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors[J]. Physica Status Solidi C, 2010, 7(10): 2540-2543.

    [34] [34] Kopytko M, Gom.ka E, Michalczewski K, et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors[J]. Semiconductor Science and Technology, 2018, 33(12): 125010.

    [35] [35] DU X, Savich G R, Marozas B T, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design[J]. Journal of Electronic Materials, 2018, 47(2): 1038-1044.

    [36] [36] Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014, 1(4): 41102.

    [37] [37] Kopytko M, J.wikowski K. Numerical analysis of current–voltage characteristics of LWIR nBn and p-on-n HgCdTe photodetectors[J]. Journal of Electronic Materials, 2013, 42(11): 3211-3216.

    [39] [39] Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 100(16): 161102.

    [40] [40] Itsuno A M, Phillips J D, Velicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.

    [41] [41] Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBνN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2892.

    [42] [42] Itsuno A M, Phillips J D, Gilmore A S, et al. Calculated performance of an auger-suppressed unipolar HgCdTe photodetector for high temperature operation[C]// Proc. of SPIE, 2011, 8155: 81550J.

    [43] [43] Ting D Z-Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 23508.

    [44] [44] Martyniuk P, Rogalski A. Modelling of MWIR HgCdTe complementary barrier HOT detector[J]. Solid-State Electronics, 2013, 80: 96-104.

    [45] [45] Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.

    [46] [46] Kopytko M, Jozwikowski K. Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation[J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2278-2284.

    [47] [47] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier structures for HOT conditions[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3803-3807.

    [48] [48] Kopytko M. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers[J]. Infrared Physics & Technology, 2014, 64(15): 47-55.

    [49] [49] Klem J F, Kim J K, Cich M J, et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[C]// Proc. of SPIE, 2010, 7608: 76081P.

    [50] [50] Kopytko M, K.b.owski A, Gawron W, et al. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors[J]. Opto-Electronics Review, 2015, 23(2): 143-148.

    [51] [51] Kopytko M, K.b.owski A, Gawron W, et al. MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation[C]// Proc. of SPIE, 2015, 9451: 945117.

    [52] [52] Gawron W, Sobieski J, Manyk T, et al. MOCVD grown HgCdTe heterostructures for medium wave infrared detectors[J]. Coatings, 2021, 11(5): 611.

    [53] [53] Uzgur F, Kocaman S. Barrier engineering for HgCdTe unipolar detectors on alternative substrates[J]. Infrared Physics & Technology, 2019, 97(3): 123-128.

    [54] [54] Kopytko M, J.wikowski K, Rogalski A. Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode[J]. Solid-State Electronics, 2014, 100(1): 20-26.

    [55] [55] Kopytko M, Wrel J, J.wikowski K, et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.

    [56] [56] Akhavan N D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 105(12): 121110.

    [57] [57] Akhavan N D, Umana-Membreno G A, Gu R, et al. Delta doping in HgCdTe-Based unipolar barrier photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4340-4345.

    [58] [58] QIU W C, JIANG T, CHENG X A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector[J]. Journal of Applied Physics, 2015, 118(12): 124504.

    [59] [59] Kopytko M, K.b.owski A, Gawron W, et al. LWIR HgCdTe barrier photodiode with auger-suppression[J]. Semiconductor Science and Technology, 2016, 31(3): 35025.

    [60] [60] HE J, WANG P, LI Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.

    [62] [62] Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501.

    [63] [63] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595.

    [64] [64] Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties, and Applications[M]. Oxford: Wiley-Blackwell, 2011: 474-476.

    [65] [65] Piotrowski A, K.os K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time[C]// Proc. of SPIE, 2007, 6542: 65421B.

    [66] [66] Madejczyk P, Gawron W, K.b.owski A, et al. Response time study in unbiased long wavelength HgCdTe detectors[J]. Optical Engineering, 2017, 56(8): 087103.1-087103.8.

    [67] [67] Pawluczyk J, Piotrowski J, Pusz W, et al. Complex behavior of time response of HgCdTe HOT photodetectors[J]. Journal of Electronic Materials, 2015, 44(9): 3163-3173.

    [68] [68] Grodecki K, Martyniuk P, Kopytko M, et al. Fast response hot (1 1 1) HGCDTE MWIR Detectors[J]. Metrology and Measurement Systems, 2017, 24(3): 509-514.

    [69] [69] Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007, 49(3): 173-182.

    [70] [70] Kopytko M, K.b.owski A, Madejczyk P, et al. Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode[J]. Journal of Electronic Materials, 2017, 46(10): 6045-6055.

    [71] [71] Madejczyk P, Gawron W, Martyniuk P, et al. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes[J]. Infrared Physics & Technology, 2017, 81(10): 276-281.

    [72] [72] Kopytko M, J.wikowski K, Madejczyk P, et al. Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode[J]. Infrared Physics & Technology, 2013, 61: 162-166.

    [73] [73] Piotrowski J F, Rogalski A. High-Operating-Temperature Infrared Photodetectors[M]. Bellingham, Washington: SPIE Press, 2007.

    [74] [74] Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electronics, 2018, 50(2): 451.

    [75] [75] Madejczyk P, Gawron W, K.b.owski A, et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6908-6917.

    [76] [76] Martyniuk P, Gawron W, St.pień D, et al. Status of long-wave Auger suppressed HgCdTe detectors operating> 200 K[J]. Opto-Electronics Review, 2015, 23(4): 151109.

    [77] [77] Martyniuk P, Kopytko M, Keblowski A, et al. Interface influence on the long-wave Auger suppressed multilayer N+πP+p+n+ HgCdTe HOT detector performance[J]. IEEE Sensors Journal, 2017, 17(3): 674-678.

    [78] [78] Madejczyk P, Gawron W, Martyniuk P, et al. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors[J]. Semiconductor Science and Technology, 2013, 28(10): 105017.

    [79] [79] Madejczyk P, Gawron W, K.b.owski A, et al. Response time improvement of LWIR HOT MCT detectors[C]// Proc. of SPIE, 2017, 10177: 1017719.

    [80] [80] Martyniuk P, Kopytko M, Madejczyk P, et al. Theoretical simulation of a room temperature HgCdTe long-wave detector for fast response.operating under zero bias conditions[J]. Metrology and Measurement Systems, 2017, 24(4): 729-738.

    [81] [81] Kopytko M, Sobieski J, Gawron W, et al. Minority carrier lifetime in HgCdTe (1 0 0) epilayers and their potential application to background radiation limited MWIR photodiodes[J]. Semiconductor Science and Technology, 2021, 36(5): 55003.

    [82] [82] Hipwood L G, Jones C L, Walker D, et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2007, 6542: 65420I.

    [83] [83] Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2006, 6206: 620610.

    [84] [84] Hipwood L G, Gordon N T, Jones C L, et al. 4 μm cut-off MOVPE Hg1-x CdxTe hybrid arrays with near BLIP performance at 180 K[C]// Proc. of SPIE, 2003, 5074: 185.

    [85] [85] Knowles P, Hipwood L, Pillans L, et al. MCT FPAs at high operating temperatures[C]//Proc. of SPIE, 2011, 8185: 818505.

    [86] [86] Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144.

    [87] [87] Bowen G J, Blenkinsop I D, Catchpole R, et al. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors[C]// Proc. of SPIE, 2005, 5783: 392.

    [88] [88] Hipwood L G, Jones C L, Price J, et al. LW Hawk: a 16 μm pitch full-TV LW IRFPA made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2009, 7298: 729820.

    [89] [89] Abbott P, Thorne P M, Arthurs C P. Latest detector developments with HgCdTe grown by MOVPE on GaAs substrates[C]// Proc. of SPIE, 2011, 8012: 801236.

    [90] [90] Knowles P, Hipwood L, Shorrocks N, et al. Mercury cadmium telluride detectors achieve high operating temperatures[J]. SPIE Newsroom, 2012. Doi: 10.1117/2.1201211.004535.

    [91] [91] McEwen R K, Jeckells D, Bains S, et al. Developments in reduced pixel geometries with MOVPE grown MCT arrays[C]// Proc. of SPIE, 2015, 9451: 94512D.

    [92] [92] Jeckells D, McEwen R K, Bains S, et al. Further developments of 8 μm pitch MCT pixels at Finmeccanica (formerly Selex ES)[C]// Proc. of SPIE, 2016, 9819: 98191X.

    [93] [93] Kinch M A, Wan C-F, Schaake H, et al. Universal 1/f noise model for reverse biased diodes[J]. Applied Physics Letters, 2009, 94(19): 193508.

    [94] [94] Lee D L, Dreiske P, Ellsworth J, et al. Law 19: the ultimate photodiode performance metric[C]// Proc. of SPIE, 2020, 11407: 114070X.

    [97] [97] Jerram P, Beletic J. Teledyne’s high performance infrared detectors for Space missions[C]// Proc. of SPIE, 2018, 11180: 111803D-2.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology, 2022, 44(9): 889

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 14, 2022

    Accepted: --

    Published Online: Oct. 29, 2022

    The Author Email: Libin TANG (scitang@163.com)

    DOI:

    CSTR:32186.14.

    Topics