Laser Technology, Volume. 48, Issue 1, 105(2024)
Research on laser ultrasonic wavefield based on physical-informed neural network
[1] [1] ZHOU H, ZHANG B,FENG Q B, et al. Numerical study on defect detection by exciting ultrasound with ring-shaped light source[J]. Laser Technology, 2021, 45(2):168-173(in Chinese).
[2] [2] SHEN Zh H, YUAN L, ZHANG H Ch, et al. Laser ultrasonic in so-lids[M]. Beijing: Post & Telecom Press, 2015: 9-10(in Chinese).
[3] [3] YUAN Y Q, CHEN S Zh. Modern ultrasonic principles and applications [M]. Nanjing: Nanjing University Press, 1996: 323-403(in Chinese).
[4] [4] WANG Y Q, WANG Y X, MA Sh B. Crack detection based on laser ultrasound diffraction transverse wave[J]. Laser Technology, 2019, 43(4): 546-550(in Chinese).
[5] [5] ZHANG Sh Y. Laser ultrasound and non-destructive evaluation of materials[J]. Journal of Applied Acoustics, 1992, 11(4): 1-6(in Ch-inese).
[6] [6] ZHANG Sh Y. High technology of ultrasonic nondestructive testing[J]. International Academic Development, 1998 (8):58-60(in Ch-inese).
[7] [7] ZHANG X R. Evaluation of composites and nano-structured materials by laser ultrasound[J]. Journal of Applied Acoustics, 2000,19(5):1-9(in Chinese).
[8] [8] TRTNIK G, GAMS M. Recent advances of ultrasonic testing of cement based materials at early ages[J]. Ultrasonics, 2014, 54(1): 66-75.
[9] [9] BLACKSHIRE J L. Ultrasonic propagation and damage sensing in a bonded PMC/SiC-foam[C]// 2014 IEEE International Ultrasonics Symposium (IUS). Chicago, USA:IEEE, 2014: 248-251.
[10] [10] BLACKSHIRE J L, SATHISH S. Near-field ultrasonic scattering from surface-breaking cracks[J]. Applied Physics Letters, 2002, 80(18): 3442-3444.
[11] [11] DAWSON A J, MICHAELS J E, MICHAELS T E. Isolation of ultrasonic scattering by wavefield baseline subtraction[J]. Mechanical Systems and Signal Processing, 2016, 70: 891-903.
[12] [12] FLYNN E B. Embedded multi-tone ultrasonic excitation and continuous-scanning laser doppler vibrometry for rapid and remote imaging of structural defects[C]//EWSHM-7th European Workshop on Structural Health Monitoring. Nantes, France: Université de Nantes, 2014:1561-1567.
[13] [13] POHL J, MOOK G. Laser-vibrometric analysis of propagation and interaction of lamb waves in CFRP-plates[J]. CEAS Aeronautical Journal, 2013, 4(1): 77-85.
[14] [14] NIELSEN M, LUND O. NN-align. An artificial neural network-based alignment algorithm for MHC class Ⅱ peptide binding prediction[J]. BMC Bioinformatics, 2009, 10:296.
[15] [15] LIN Y, WU Y, GUO D, et al. A deep learning framework of autonomous pilot agent for air traffic controller training[J]. IEEE Transactions on Human-Machine Systems, 2021, 51(5): 442-450.
[16] [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6): 84-90.
[17] [17] LI H. Deep learning for natural language processing: Advantages and challenges[J]. National Science Review, 2018, 5(1): 22-24.
[18] [18] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations[J/OL]. (2017-11-28)[2023-02-27]. https://arxiv.org/abs/1711.10561.
[19] [19] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations[J/OL]. (2017-11-28)[2023-02-27]. https://arxiv.org/abs/1711.10566.
[20] [20] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
[21] [21] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030.
[22] [22] SAHLI COSTABAL F, YANG Y B, PERDIKARIS P, et al. Phy-sics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 00042.
[23] [23] FANG Z, ZHAN J. Deep physical informed neural networks for metamaterial design[J]. IEEE Access, 2019, 8: 24506-24513.
[24] [24] HASTIE T, TIBSHIRANI R, FRIEDMAN J H, et al. The elements of statistical learning: Data mining, inference, and prediction[M]. New York,USA: Springer-Verlag New York Inc, 2009: 389-415.
[25] [25] MURPHY K P. Machine learning: A probabilistic perspective[M]. Cambridge,USA: MIT Press, 2012: 995-1005.
[26] [26] MOSELEY B, MARKHAM A, NISSEN-MEYER T. Solving the wave equation with physics-informed deep learning[J/OL].(2020-06-21)[2023-02-27]. https://arxiv.org/abs/2006.11894.
[27] [27] SHUKLA K, LEONI P, BLACKSHIRE J, et al. Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks[J]. Journal of Nondestructive Evaluation, 2020,39: 1-20.
[28] [28] KINGMA D P, BA J. Adam: A method for stochastic optimization[J].(2014-12-22)[2023-02-27]. https://arxiv.org/abs/1412.6980.
[29] [29] NI C, DONG L, SHEN Z, et al. Numerical simulation study of defect detections by using laser array generated giant acoustic waves[J]. International Journal of Thermophysics, 2015, 36(5/6): 1236-1243.
[30] [30] SONG Y, MA Sh B, ZHANG K F. Finite element analysis of thermo-elastic laser ultrasonic excitation and defect detection[J]. Laser Technology, 2021, 45(2): 246-251(in Chinese).
[31] [31] XU B Q. Numerical modeling of laser ultrasound in layered systems using finite element method and determination the materials parameters using the neural networks[D]. Nanjing: Nanjing University of Science & Technology,2004: 58-79(in Chinese).
Get Citation
Copy Citation Text
YAN Xin, YING Kaining, DAI Lunan, TAN Junfu, SHEN Zhonghua, NI Chenyin. Research on laser ultrasonic wavefield based on physical-informed neural network[J]. Laser Technology, 2024, 48(1): 105
Category:
Received: Jan. 16, 2023
Accepted: --
Published Online: Jul. 1, 2024
The Author Email: NI Chenyin (chenyin.ni@njust.edu.cn)