Laser & Optoelectronics Progress, Volume. 61, Issue 5, 0522001(2024)

Bionic Compound Eye Based on a Flexible Fresnel Lens Array

Wenya Zhao, Yecan Zhang, Yonghao Jiao, Haobo Sun, Ningde Miao, Dongdong Han, and Yonglai Zhang*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin , China
  • show less
    References(30)

    [1] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).

    [2] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [3] Lee G J, Choi C, Kim D H et al. Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses[J]. Advanced Functional Materials, 28, 1705202(2018).

    [4] Sitalakshmi B, Vudayagiri A, Sreedhar S et al. On-axis time-resolved spatial characterization of shock-induced refractive fringes in liquid water[J]. Journal of The Optical Society of America B, 30, 2206-2214(2013).

    [5] Wang Y W, Cai B L, Lu Y et al. Optical system design of artificial compound eye based on field stitching[J]. Microwave and Optical Technology Letters, 59, 1277-1279(2017).

    [6] Wilburn B, Joshi N, Vaish V et al. High performance imaging using large camera arrays[C], 765-776(2005).

    [7] Tanida J, Kumagai T, Yamada K et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Applied Optics, 40, 1806-1813(2001).

    [8] Zhu D F, Zeng X F, Li C H et al. Focus-tunable microlens arrays fabricated on spherical surfaces[J]. Journal of Microelectromechanical Systems, 20, 389-395(2011).

    [9] Zhu D F, Li C H, Zeng X F et al. Tunable-focus microlens arrays on curved surfaces[J]. Applied Physics Letters, 96, 081111(2010).

    [10] Floreano D, Pericet-Camara R, Viollet S et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences, 110, 9267-9272(2013).

    [11] Hu X Y, Ma Z C, Han B et al. Femtosecond laser fabrication of protein-based smart soft actuators[J]. Chinese Journal of Lasers, 48, 1402001(2021).

    [12] Liu Y Q, Zhang J R, Han D D et al. Recent progress in laser-processed graphene for sensors and actuators[J]. Chinese Journal of Lasers, 48, 1502003(2021).

    [13] Jiao Z Z, Li J C, Chen Z D et al. Research progress on laser processing of antireflection surfaces[J]. Chinese Journal of Lasers, 48, 0202011(2021).

    [14] Li J C, Chen Z D, Han D D et al. Laser processing of polyvinylidene fluoride with superhydrophobicity[J]. Chinese Journal of Lasers, 48, 0202002(2021).

    [15] Liu X F, Han D A, Guo H et al. Surface enhanced Raman scattering substrates based on femtosecond laser structured polytetrafluoroethylene[J]. Laser & Optoelectronics Progress, 58, 2314011(2021).

    [16] Zhu L, Gao Y Y, Hu X Y et al. Progress in femtosecond laser fabrication of artificial compound eye[J]. Chinese Science Bulletin, 64, 1254-1267(2019).

    [17] Tian Z N, Yao W G, Xu J J et al. Focal varying microlens array[J]. Optics Letters, 40, 4222-4225(2015).

    [18] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).

    [19] Qin D, Xia Y N, Whitesides G M. Soft lithography for micro- and nanoscale patterning[J]. Nature Protocols, 5, 491-502(2010).

    [20] Gao X, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).

    [21] Gailevičius D, Padolskytė V, Mikoliūnaitė L et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution[J]. Nanoscale Horizons, 4, 647-651(2019).

    [22] Ovsianikov A, Viertl J, Chichkov B et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication[J]. ACS Nano, 2, 2257-2262(2008).

    [23] Stern L, Bopp D G, Schima S A et al. Chip-scale atomic diffractive optical elements[J]. Nature Communications, 10, 1-7(2019).

    [24] Ruffato G, Massari M, Romanato F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light, Science & Applications, 8, 113(2019).

    [25] Thiele S, Arzenbacher K, Gissibl T et al. 3D-printed eagle eye: compound microlens system for foveated imaging[J]. Science Advances, 3, e1602655(2017).

    [26] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [27] Banerji S, Meem M, Majumder A et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 6, 805-810(2019).

    [28] Austin M D, Ge H X, Wu W et al. Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography[J]. Applied Physics Letters, 84, 5299-5301(2004).

    [29] Schift H. Nanoimprint lithography: an old story in modern times? A review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 458(2008).

    [30] Hu Z Y, Zhang Y L, Pan C et al. Miniature optoelectronic compound eye camera[J]. Nature Communications, 13, 1-10(2022).

    Tools

    Get Citation

    Copy Citation Text

    Wenya Zhao, Yecan Zhang, Yonghao Jiao, Haobo Sun, Ningde Miao, Dongdong Han, Yonglai Zhang. Bionic Compound Eye Based on a Flexible Fresnel Lens Array[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0522001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Feb. 6, 2023

    Accepted: Mar. 16, 2023

    Published Online: Mar. 5, 2024

    The Author Email: Yonglai Zhang (yonglaizhang@jlu.edu.cn)

    DOI:10.3788/LOP230563

    CSTR:32186.14.LOP230563

    Topics