Journal of Semiconductors, Volume. 42, Issue 9, 092101(2021)
The scanning tunneling microscopy and spectroscopy of GaSb1–xBix films of a few-nanometer thickness grown by molecular beam epitaxy
[1]
[2] E Luna, O Delorme, L Cerutti et al. Microstructure and interface analysis of emerging Ga(Sb, Bi) epilayers and Ga(Sb, Bi)/GaSb quantum wells for optoelectronic applications. Appl Phys Lett, 112, 151905(2018).
[3] S Souto, J Hilska, Gobato Y Galvão et al. Raman spectroscopy of GaSb1−
[4] C B Pan, F X Zha, Y X Song et al. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb1−
[5] O Delorme, L Cerutti, E Luna et al. GaSbBi/GaSb quantum well laser diodes. Appl Phys Lett, 110, 222106(2017).
[6] K Alberi, J Wu, W Walukiewicz et al. Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys Rev B, 75, 045203(2007).
[7] S Francoeur, M J Seong, A Mascarenhas et al. Band gap of GaAs1−
[8] M K Rajpalke, W M Linhart, K M Yu et al. Bi-induced band gap reduction in epitaxial InSbBi alloys. Appl Phys Lett, 105, 212101(2014).
[9] A J Shalindar, P T Webster, B J Wilkens et al. Measurement of InAsBi mole fraction and InBi lattice constant using Rutherford backscattering spectrometry and X-ray diffraction. J Appl Phys, 120, 145704(2016).
[10] S M Wang, I Saha Roy, P X Shi et al. Growth of GaSb1–
[11] O Delorme, L Cerutti, E Luna et al. Molecular-beam epitaxy of GaInSbBi alloys. J Appl Phys, 126, 155304(2019).
[12] L J Wang, L Y Zhang, L Yue et al. Novel dilute bismide, epitaxy, physical properties and device application. Crystals, 7, 63(2017).
[13] M K Rajpalke, W M Linhart, M Birkett et al. High Bi content GaSbBi alloys. J Appl Phys, 116, 043511(2014).
[14] L Yue, X Chen, Y C Zhang et al. Structural and optical properties of GaSbBi/GaSb quantum wells. Opt Mater Express, 8, 893(2018).
[15] A Duzik, J M Millunchick. Surface morphology and Bi incorporation in GaSbBi(As)/GaSb films. J Cryst Growth, 390, 5(2014).
[16] L Yue, X Chen, Y Zhang et al. Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1–
[17] E Bauer, J H van der Merwe. Structure and growth of crystalline superlattices: From monolayer to superlattice. Phys Rev B, 33, 3657(1986).
[18] K Yamaguchi, K Yujobo, T Kaizu. Stranski-Krastanov growth of InAs quantum dots with narrow size distribution. Jpn J Appl Phys, 39, L1245(2000).
[19] P M Thibado, B R Bennett, B V Shanabrook et al. A RHEED and STM study of Sb-rich AlSb and GaSb (001) surface reconstructions. J Cryst Growth, 175/176, 317(1997).
[20] F X Zha, F Hong, B C Pan et al. Atomic resolution on the (111)B surface of mercury cadmium telluride by scanning tunneling microscopy. Phys Rev B, 97, 035401(2018).
[21] R M Feenstra. Tunneling spectroscopy of the (110) surface of direct-gap III–V semiconductors. Phys Rev B, 50, 4561(1994).
[22] F X Zha, M S Li, J Shao et al. Implication of exotic topography depths of surface nanopits in scanning tunneling microscopy of HgCdTe. Appl Phys Lett, 101, 141604(2012).
[23] M P Polak, P Scharoch, R Kudrawiec. First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: Chemical trends versus experimental data. Semicond Sci Technol, 30, 094001(2015).
Get Citation
Copy Citation Text
Fangxing Zha, Qiuying Zhang, Haoguang Dai, Xiaolei Zhang, Li Yue, Shumin Wang, Jun Shao. The scanning tunneling microscopy and spectroscopy of GaSb1–xBix films of a few-nanometer thickness grown by molecular beam epitaxy[J]. Journal of Semiconductors, 2021, 42(9): 092101
Category: Articles
Received: Mar. 5, 2021
Accepted: --
Published Online: Sep. 15, 2021
The Author Email: