Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 3, 484(2021)

Traffic sign detection algorithm based on improved Faster R-CNN

LI Zhe, ZHANG Hui-hui, and DENG Jun-yong
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [3] [3] CHEN Y X, XIE Y, WANG Y L. Detection and recognition of traffic signs based on HSV vision model and shape features [J]. Journal of Computers, 2013, 8(5): 1366-1370.

    [4] [4] KHAN J F, BHUIYAN S M A, ADHAMI R R. Image segmentation and shape analysis for road-sign detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96.

    [5] [5] MEUTER M, NUNN C, GORMER S M, et al. A decision fusion and reasoning module for a traffic sign recognition system [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1126-1134.

    [7] [7] GROLAT T, ARZEL M, VATON S. Stretching the edges of SVM traffic classification with FPGA acceleration [J].IEEE Transactions on Network and Service Management, 2014, 11(3): 278-291.

    [8] [8] CHEN T, LU S J. Accurate and efficient traffic sign detection using discriminative AdaBoost and support vector regression [J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4006-4015.

    [11] [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.

    [12] [12] GIRSHICK R. Fast R-CNN [C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.

    [13] [13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [17] [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.

    [18] [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3-19.

    [19] [19] CAI Z W, FAN Q F, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection [C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 354-370.

    [20] [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.

    [21] [21] Chinese traffic sign database[DB/OL]. (2017-02-20)[2020-05-12].http: //www.nlpr.ia.ac.cn/pal/trafficdata/detection.html.

    Tools

    Get Citation

    Copy Citation Text

    LI Zhe, ZHANG Hui-hui, DENG Jun-yong. Traffic sign detection algorithm based on improved Faster R-CNN[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 484

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 23, 2020

    Accepted: --

    Published Online: Sep. 3, 2021

    The Author Email:

    DOI:10.37188/cjlcd.2020-0195

    Topics