Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 9, 1190(2022)
Red blood cell image segmentation based on NODE-UNet++ and marker watershed
Fig. 1. Image annotation and analysis. (a) Original image;(b) Mask image;(c) Label image.
Fig. 3. Flow chart of our method for red blood cell image segmentation
Fig. 7. Loss values and accuracy in the training process of NODE-UNet++
Fig. 8. Segmentation images of NODE-UNet++. (a) Original images; (b) Label images; (c) Pre-segmentation images.
Fig. 9. Segmentation images of MW algorithm. (a) Foreground marker image; (b) Background marker image; (c) Final image; (d) Reconstruction map of gradient topographic; (e) Segmented RBCs.
Fig. 10. Red blood cell segmentation results from three different algorithms. (a)Original image;(b)Label image;(c) Results using the algorithm in [14];(d) Results using MW-UNet++ algorithm;(e) Results using our algorithm.
|
|
Get Citation
Copy Citation Text
Ya-qi RONG, Li-juan ZHANG, Jin-li CUI, Wei SU, Meng-ye GAI. Red blood cell image segmentation based on NODE-UNet++ and marker watershed[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1190
Category: Research Articles
Received: Jan. 15, 2022
Accepted: --
Published Online: Sep. 14, 2022
The Author Email: Meng-ye GAI (mengyeg@jlau.edu.cn)