Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1228004(2024)

Object Detection Algorithm in Remote Sensing Images Based on Improved YOLOX

Zhaohua Hu1,2 and Yuhui Li1、*
Author Affiliations
  • 1School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • show less
    Figures & Tables(16)
    Structure of the YOLOX algorithm
    Structure of improved YOLOX algorithm
    Structure of RCAM
    Structure of DM
    Structure of FFM. (a) Branch 1; (b) branch 2; (c) branch 3
    Structure of attention mechanism CAS
    Structure of FEM
    Partial images and targets on DIOR and RSOD datasets
    Renderings before and after preprocessing. (a) Original images; (b) images after ACE preprocessing
    mAP50 radar chart of algorithms before and after improvement under different categories
    Visualization results of thermal diagrams. (a) YOLOX; (b) improved YOLOX
    Comparison charts of detection results. (a) Ground truth in remote sensing images; (b) YOLOX; (c) improved YOLOX
    • Table 1. Ablation experimental results of the proposed algorithm on the DIOR dataset

      View table

      Table 1. Ablation experimental results of the proposed algorithm on the DIOR dataset

      MethodParams /106GFLOPs /109APS /%APM /%APL /%AP /%FPS /(frame/s)mAP50 /%
      YOLOX5.0415.211.335.362.743.95669.79
      YOLOX+ACE5.0415.211.537.966.447.05672.71
      YOLOX+RCAM5.1015.312.138.666.147.15572.84
      YOLOX+FFM6.2517.412.339.667.147.55173.22
      YOLOX+FEM5.4115.711.837.766.747.45373.08
      YOLOX+RCAM+FFM+FEM6.6918.812.640.167.448.55073.87
    • Table 2. Comparative experimental results of algorithms with different attention machnisms

      View table

      Table 2. Comparative experimental results of algorithms with different attention machnisms

      MethodParams /106APS /%APM /%APL /%AP /%FPS /(frame/s)mAP50 /%
      YOLOX+CBAM5.4211.736.866.647.25172.90
      YOLOX+SimAM5.4011.537.666.547.35572.86
      YOLOX+CA5.4111.638.066.647.15473.01
      YOLOX+CAS5.4111.837.766.747.45373.08
    • Table 3. Comparative experimental results of different algorithms on the DIOR dataset

      View table

      Table 3. Comparative experimental results of different algorithms on the DIOR dataset

      MethodSizeParams /106GFLOPs /109FPS /(frame/s)mAP50 /%APS /%APM /%APL /%
      Faster R-CNN64028.50948.46.063.106.532.357.6
      CenterNet64032.70109.319.056.055.425.251.4
      YOLOv46405.9016.267.061.016.731.350.5
      YOLOv56407.1016.550.066.9711.137.462.0
      YOLOv76406.1013.366.072.8312.338.969.1
      CF2PN64091.60>31.019.767.2511.336.061.4
      YOLOX6405.0415.256.069.7911.335.362.7
      Improved YOLOX6406.6918.850.073.8712.640.167.4
    • Table 4. Comparative experimental results of different algorithms on the RSOD dataset

      View table

      Table 4. Comparative experimental results of different algorithms on the RSOD dataset

      MethodSizeParams /106FPS /(frame/s)AP /%mAP50 /%
      AircraftOverpassOiltankPlayground
      Faster R-CNN64028.50671.90100.0090.90100.0090.70
      CenterNet64032.701970.8385.3786.56100.0085.69
      YOLOv46405.906778.2884.5883.94100.0086.70
      YOLOv56407.105094.1080.5095.1099.1092.20
      MDCF2Det64081.02100.0090.77100.0092.95
      YOLOX6405.045695.9586.9396.64100.0094.88
      Improved YOLOX6406.695097.2088.3399.35100.0096.22
    Tools

    Get Citation

    Copy Citation Text

    Zhaohua Hu, Yuhui Li. Object Detection Algorithm in Remote Sensing Images Based on Improved YOLOX[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1228004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 27, 2023

    Accepted: Aug. 30, 2023

    Published Online: May. 20, 2024

    The Author Email: Yuhui Li (523700486@qq.com)

    DOI:10.3788/LOP231615

    CSTR:32186.14.LOP231615

    Topics