Journal of Synthetic Crystals, Volume. 50, Issue 2, 209(2021)

Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications

HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, and LI Yuqiang
Author Affiliations
  • [in Chinese]
  • show less
    References(124)

    [1] [1] IZYUMSKAYA N, AVRUTIN V, ZGR , et al. Preparation and properties of ZnO and devices[J]. Physica Status Solidi (b), 2007, 244(5): 1439-1450.

    [2] [2] ABRAHAMS S C, BERNSTEIN J L. Remeasurement of the structure of hexagonal ZnO[J]. Acta Crystallographica Section B, 1969, 25(7): 1233-1236.

    [3] [3] WANG G, KIEHNE G T, WONG G K L, et al. Large second harmonic response in ZnO thin films[J]. Applied Physics Letters, 2002, 80(3): 401-403.

    [4] [4] HUANG F, LIN Z, LIN W W, et al. Research progress in ZnO single-crystal: growth, scientific understanding, and device applications[J]. Chinese Science Bulletin, 2014, 59(12): 1235-1250.

    [5] [5] OKA K, SHIBATA H, KASHIWAYA S. Crystal growth of ZnO[J]. Journal of Crystal Growth, 2002, 237/238/239: 509-513.

    [6] [6] KLEBER W, MLODOCH R. ber Die Synthese von Zinkit-Einkristallen[J]. Kristall Und Technik, 1966, 1(2): 249-259.

    [7] [7] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328.

    [8] [8] WANKLYN B M. The growth of ZnO crystals from phosphate and vanadate fluxes[J]. Journal of Crystal Growth, 1970, 7(1): 107-108.

    [9] [9] NIELSEN J W, DEARBORN E F. The growth of large single crystals of zinc oxide[J]. The Journal of Physical Chemistry, 1960, 64(11): 1762-1763.

    [10] [10] SHILOH M, GUTMAN J. Growth of ZnO single crystals by chemical vapour transport[J]. Journal of Crystal Growth, 1971, 11(2): 105-109.

    [11] [11] PIEKARCZYK W, GAZDA S, NIEMYSKI T. The growth of zinc oxide crystals by chemical transport method[J]. Journal of Crystal Growth, 1972, 12(4): 272-276.

    [12] [12] MATSUMOTO K, KONEMURA K, SHIMAOKA G. Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents[J]. Journal of Crystal Growth, 1985, 71(1): 99-103.

    [13] [13] MATSUMOTO K, SHIMAOKA G. Crystal growth of ZnO by chemical transport[J]. Journal of Crystal Growth, 1988, 86(1/2/3/4): 410-414.

    [14] [14] MATSUMOTO K, NODA K. Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent[J]. Journal of Crystal Growth, 1990, 102(1/2): 137-140.

    [15] [15] MULLIN J B, MACEWAN W R, HOLLIDAY C H, et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds[J]. Journal of Crystal Growth, 1972, 13/14: 629-634.

    [16] [16] REYNOLDS D C, LITTON C W, LOOK D C, et al. High-quality, melt-grown ZnO single crystals[J]. Journal of Applied Physics, 2004, 95(9): 4802-4805.

    [17] [17] NAUSE J, NEMETH B. Pressurized melt growth of ZnO boules[J]. Semiconductor Science and Technology, 2005, 20(4): S45-S48.

    [18] [18] HELBIG R. ber Die züchtung von grsseren reinen und dotierten ZnO-kristallen aus der gasphase[J]. Journal of Crystal Growth, 1972, 15(1): 25-31.

    [19] [19] OHSHIMA E, OGINO H, NIIKURA I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method[J]. Journal of Crystal Growth, 2004, 260(1/2): 166-170.

    [20] [20] HUTSON A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Physical Review Letters, 1960, 4(10): 505.

    [21] [21] KO H J, CHEN Y F, HONG S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2000, 77(23): 3761-3763.

    [22] [22] REYNOLDS D C, COLLINS T C. Excited terminal states of a bound exciton-donor complex in ZnO[J]. Physical Review, 1969, 185(3): 1099.

    [23] [23] GUTOWSKI, PRESSER, BROSER. Acceptor-exciton complexes in ZnO: a comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy[J]. Physical Review B, Condensed Matter, 1988, 38(14): 9746-9758.

    [24] [24] BLATTNER G, KLINGSHIRN C, HELBIG R, et al. The influence of a magnetic field on the ground and excited states of bound exciton complexes in ZnO[J]. Physica Status Solidi (b), 1981, 107(1): 105-115.

    [25] [25] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17): 2230-2232.

    [26] [26] OHTA H, KAWAMURA K I, ORITA M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO[J]. Applied Physics Letters, 2000, 77(4): 475-477.[LinkOut]

    [27] [27] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4(1): 42-46.

    [28] [28] TSUKAZAKI A, OHTOMO A, KAWASAKI M. Blue-light-emitting diodes based on ZnO[J]. Oyo Buturi, 2005, 74(10): 1359-64.

    [29] [29] RAIMONDI D L, KAY E. High resistivity transparent ZnO thin films[J]. Journal of Vacuum Science and Technology, 1970, 7(1): 96-99.

    [30] [30] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.

    [31] [31] PARK C H, ZHANG S B, WEI S H. Origin ofp-type doping difficulty in ZnO: the impurity perspective[J]. Physical Review B, 2002, 66(7): 073202.

    [32] [32] LOOK D C, CLAFLIN B. P-type doping and devices based on ZnO[J]. Physica Status Solidi (b), 2004, 241(3): 624-630.

    [33] [33] LU J G, ZHANG Y Z, YE Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Applied Physics Letters, 2006, 88(22): 222114.

    [34] [34] YUAN G D, ZHANG W J, JIE J S, et al. P-type ZnO nanowire arrays[J]. Nano Letters, 2008, 8(8): 2591-2597.

    [35] [35] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.

    [36] [36] KONG X Y, DING Y, YANG R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303(5662): 1348-1351.

    [37] [37] HUGHES W L, WANG Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Applied Physics Letters, 2005, 86(4): 043106.

    [38] [38] LIM Y S, PARK J W, HONG S T, et al. Carbothermal synthesis of ZnO nanocomb structure[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 100-103.

    [39] [39] GAO P X, DING Y, MAI W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J]. Science, 2005, 309(5741): 1700-1704.

    [40] [40] GAO P X, WANG Z L. High-yield synthesis of single-crystal nanosprings of ZnO[J]. Small, 2005, 1(10): 945-949.

    [41] [41] WANG Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology[J]. ACS Nano, 2008, 2(10): 1987-1992.

    [42] [42] GAO P X, WANG Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO[J]. The Journal of Physical Chemistry B, 2002, 106(49): 12653-12658.

    [43] [43] HE J H, HO C H, WANG C W, et al. Growth of crossed ZnO nanorod networks induced by polar substrate surface[J]. Crystal Growth & Design, 2009, 9(1): 17-19.

    [44] [44] WANG X D, DING Y, LI Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls[J]. The Journal of Physical Chemistry C, 2009, 113(5): 1791-1794.

    [45] [45] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105.

    [46] [46] WANG X D, LIU J, SONG J H, et al. Integrated nanogenerators in biofluid[J]. Nano Letters, 2007, 7(8): 2475-2479.

    [47] [47] WANG X D, GAO Y F, WEI Y G, et al. Output of an ultrasonic wave-driven nanogenerator in a confined tube[J]. Nano Research, 2009, 2(3): 177-182.

    [48] [48] QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.

    [49] [49] YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39.

    [50] [50] NAKAMURA S, SENOH M, IWASA N, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes[J]. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 10B): L1332-L1335.

    [51] [51] YU P, TANG Z K, WONG G K, et al. Room temperature stimulated emission from ZnO quantum dot films[J]. Proc 23rd Inter Conf on the Physics of Semiconductor. World Scientific, Singapore, 1996, 2: 1453-1456.

    [52] [52] TANG Z K, WONG G K L, YU P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 1998, 72(25): 3270-3272.

    [53] [53] SERVICE R F. Will UV lasers beat the blues?[J]. Science, 1997, 276(5314): 895.

    [54] [54] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328.

    [55] [55] GIBART P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth[J]. Reports on Progress in Physics, 2004, 67(5): 667-715.

    [56] [56] CHOI J H, ZOULKARNEEV A, KIM S I, et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates[J]. Nature Photonics, 2011, 5(12): 763-769.

    [57] [57] SHEN D Z, MEI Z X, LIANG H L, et al. ZnO-based matierial, heterojunction and photoelectronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 0001b.

    [58] [58] HOPFIELD J J, THOMAS D G. On some observable properties of longitudinal excitons[J]. Journal of Physics and Chemistry of Solids, 1960, 12(3/4): 276-284.

    [59] [59] REYNOLDS D C, LITTON C W, COLLINS T C. Zeeman effects in the edge emission and absorption of ZnO[J]. Physical Review, 1965, 140(5A): a1726.

    [60] [60] TOMZIG E, HELBIG R. Band-edge emission in ZnO[J]. Journal of Luminescence, 1976, 14(3): 403-415.

    [61] [61] DAMEN T C, PORTO S P S, TELL B. Raman effect in zinc oxide[J]. Physical Review, 1966, 142(2): 570.

    [62] [62] ARGUELLO C A, ROUSSEAU D L, PORTO S P S. First-order Raman effect in wurtzite-type crystals[J]. Physical Review, 1969, 181(3): 1351.

    [63] [63] ASHKENOV N, MBENKUM B N, BUNDESMANN C, et al. Infrared dielectric functions and phonon modes of high-quality ZnO films[J]. Journal of Applied Physics, 2003, 93(1): 126-133.

    [64] [64] LAVROV E V. Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J]. Physica B: Condensed Matter, 2003, 340/341/342: 195-200.

    [65] [65] LAVROV E V, WEBER J, BRRNERT F, et al. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy[J]. Physical Review B, 2002, 66(16): 165205.

    [66] [66] MCCLUSKEY M D, JOKELA S J, ZHURAVLEV K K, et al. Infrared spectroscopy of hydrogen in ZnO[J]. Applied Physics Letters, 2002, 81(20): 3807-3809.

    [67] [67] ZGR, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301.

    [68] [68] CUSC R, ALARCN-LLAD E, IBEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review B, 2007, 75(16): 165202.

    [69] [69] LI T T, WANG M Y, LIU X L, et al. Hydrogen impurities in ZnO: shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2402-2407.

    [70] [70] LIN W W, CHEN D G, ZHANG J Y, et al. Hydrothermal growth of ZnO single crystals with high carrier mobility[J]. Crystal Growth & Design, 2009, 9(10): 4378-4383.

    [71] [71] LAUDISE R A, BALLMAN A A. Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. The Journal of Physical Chemistry, 1960, 64(5): 688-691.

    [72] [72] LAUDISE R A, KOLB E D, CAPORASO A J. Hydrothermal growth of large sound crystals of zinc oxide[J]. Journal of the American Ceramic Society, 1964, 47(1): 9-12.

    [73] [73] SEKIGUCHI T, MIYASHITA S, OBARA K, et al. Hydrothermal growth of ZnO single crystals and their optical characterization[J]. Journal of Crystal Growth, 2000, 214/215: 72-76.

    [74] [74] DILEO L, ROMANO D, SCHAEFFER L, et al. Effect of complexing agent on hydrothermal growth of ZnO crystals[J]. Journal of Crystal Growth, 2004, 271(1/2): 65-73.

    [75] [75] DEMIANETS L N, KOSTOMAROV D V, KUZ’MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47(1): S86-S98.

    [76] [76] EHRENTRAUT D, SATO H, KAGAMITANI Y, et al. Solvothermal growth of ZnO[J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(4): 280-335.

    [77] [77] DEM’YANETS L N, LYUTIN V I. Status of hydrothermal growth of bulk ZnO: latest issues and advantages[J]. Journal of Crystal Growth, 2008, 310(5): 993-999.

    [78] [78] ZHANG C L, ZHOU W N, HANG Y, et al. Hydrothermal growth and characterization of ZnO crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1819-1822.

    [79] [79] NTEP J M, SAID HASSANI S, LUSSON A, et al. ZnO growth by chemical vapour transport[J]. Journal of Crystal Growth, 1999, 207(1/2): 30-34.

    [80] [80] CHENG L, ZHU S, ZHENG W, et al. Ultra-wide spectral range (0.4-8 μm) transparent conductive ZnO bulk single crystals: a leading runner for mid-infrared optoelectronics[J]. Materials Today Physics, 2020, 14: 100244.

    [81] [81] LIN W W, DING K, LIN Z, et al. The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility[J]. Cryst Eng Comm, 2011, 13(10): 3338-3341.

    [82] [82] ZHENG W, LIN R C, ZHANG D, et al. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism[J]. Advanced Optical Materials, 2018, 6(21): 1800697.

    [83] [83] HUANG F, ZHU S, WANG F, et al. Can we transform any insulators into semiconductors? theory, strategy, and example in ZnO[J]. Matter, 2020, 2(5): 1091-1105.

    [84] [84] JIN M G, LI Z B, HUANG F, et al. Critical conditions for the formation of p-type ZnO with Li doping[J]. RSC Advances, 2018, 8(54): 30868-30874.

    [85] [85] HIRAMATSU H, OHTA H, SUZUKI T, et al. Mechanism for heteroepitaxial growth of transparent P-type semiconductor: LaCuOS by reactive solid-phase epitaxy[J]. Crystal Growth & Design, 2004, 4(2): 301-307.

    [86] [86] Look D C, Leedy K D, Tomich D H, et al. Mobility analysis of highly conducting thin films:application to ZnO[J]. Applied Physics Letters, 2010, 96(6): 062102.

    [87] [87] MASUDA Y, KONDO M, KOUMOTO K. Site-selective deposition of In2O3 using a self-assembled monolayer[J]. Crystal Growth & Design, 2009, 9(1): 555-561.

    [88] [88] MINAMI T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Science and Technology, 2005, 20(4): S35-S44.

    [89] [89] IGASAKI Y, SAITO H. Substrate temperature dependence of electrical properties of ZnO∶Al epitaxial films on sapphire (12-10)[J]. Journal of Applied Physics, 1991, 69(4): 2190-2195.

    [90] [90] PEI Z L, SUN C, TAN M H, et al. Optical and electrical properties of direct-current magnetron sputtered ZnO∶Al films[J]. Journal of Applied Physics, 2001, 90(7): 3432-3436.

    [91] [91] CHAMBERS S A. Epitaxial growth and properties of doped transition metal and complex oxide films[J]. Advanced Materials, 2010, 22(2): 219-248.

    [92] [92] KIM H, GILMORE C M, HORWITZ J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Applied Physics Letters, 2000, 76(3): 259-261.

    [93] [93] LU J G, YE Z Z, ZENG Y J, et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 2006, 100(7): 073714.

    [94] [94] LIU H F, CHUA S J, HU G X, et al. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering[J]. Journal of Applied Physics, 2007, 102(8): 083529.

    [95] [95] ZHAN Z B, ZHANG J Y, ZHENG Q H, et al. Strategy for preparing Al-doped ZnO thin film with high mobility and high stability[J]. Crystal Growth & Design, 2011, 11(1): 21-25.

    [96] [96] JI X, CHEN L, XU M X, et al. Crystal imperfection modulation engineering for functionalization of wide band gap semiconductor radiation detector[J]. Advanced Electronic Materials, 2018, 4(2): 1700307.

    [97] [97] LI T T, ZHU Y M, JI X, et al. Experimental evidence on stability of N substitution for O in ZnO lattice[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8901-8907.

    [98] [98] GRNEBOOM A, KLING L, CHRISTIANSEN S, et al. Next-generation imaging of the skeletal system and its blood supply[J]. Nature Reviews Rheumatology, 2019, 15(9): 533-549.

    [99] [99] HACHADORIAN R L, BRUZA P, JERMYN M, et al. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light[J]. Nature Communications, 2020, 11(1): 2298.

    [100] [100] BLASSE G. Scintillator materials[J]. Chemistry of Materials, 1994, 6(9): 1465-1475.

    [101] [101] RODNYI P A, DORENBOS P, VAN EIJK C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 1995, 187(1): 15-29.

    [102] [102] XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11: 4329.

    [103] [103] CHO S, KIM S, KIM J, et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 2020, 9: 156.

    [104] [104] THIRIMANNE H M, JAYAWARDENA K D G I, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response[J]. Nature Communications, 2018, 9(1): 2926.

    [105] [105] ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617.

    [106] [106] ARNFIELD M R, GABALLA H E, ZWICKER R D, et al. Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 2077-2084.

    [107] [107] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride—inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176.

    [108] [108] VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator: Ce3+ activated LaCl3[J]. Applied Physics Letters, 2000, 77(10): 1467-1468.

    [109] [109] MOSZYNSKI M, KAPUSTA M, WOLSKI D, et al. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 472-477.

    [110] [110] SAKAI E J. Recent measurements on scintillator-photodetector systems[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 418-422.

    [111] [111] LEHMANN W. Edge emission of n-type conducting ZnO and CdS[J]. Solid-State Electronics, 1966, 9(11/12): 1107-1110.

    [112] [112] SOWIAK M M, ROSS D A. Exposure characteristics of thin window cathode ray tubes on electrofax papers[J]. Applied Optics, 1969, 8(Suppl 1): 88-90.

    [113] [113] LUCKEY D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120.

    [114] [114] BATSCH T, BENGTSON B, MOSZYSKI M. Timing properties of a ZnO(Ga) scintillator (NE843)[J]. Nuclear Instruments and Methods, 1975, 125(3): 443-446.

    [115] [115] XU M X, CHEN L, LIU B, et al. Effects of photonic crystal structures on the imaging properties of a ZnO∶Ga image converter[J]. Optics Letters, 2018, 43(22): 5647-5650.

    [116] [116] LIN Y C, CHEN T Y, WANG L C, et al. Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells[J]. Journal of the Electrochemical Society, 2012, 159(6): H599-H604.

    [117] [117] RUSKE F, PFLUG A, SITTINGER V, et al. Optical modeling of free electron behavior in highly doped ZnO films[J]. Thin Solid Films, 2009, 518(4): 1289-1293.

    [118] [118] STEINHAUSER J, FA S, OLIVEIRA N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films[J]. Applied Physics Letters, 2007, 90(14): 142107.

    [119] [119] CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68.

    [120] [120] BARKER A S. Transverse and longitudinal optic mode study in MgF2 and ZnF2[J]. Physical Review, 1964, 136(5A): a1290.

    [121] [121] FAN H Y, SPITZER W, COLLINS R J. Infrared absorption in n-type germanium[J]. Physical Review, 1956, 101(2): 566.

    [122] [122] YANG X C. Electrical and optical properties of zinc oxide for scintillator applications[D]. West Virginia: West Virginia University, 2008. DOI:10.33915/etd.2729.

    [123] [123] WALUKIEWICZ W, LAGOWSKI L, JASTRZEBSKI L, et al. Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio[J]. Journal of Applied Physics, 1979, 50(2): 899-908.

    [124] [124] BAER W S. Free-carrier absorption in reduced SrTiO3[J]. Physical Review, 1966, 144(2): 734.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang. Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications[J]. Journal of Synthetic Crystals, 2021, 50(2): 209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 28, 2020

    Accepted: --

    Published Online: Mar. 30, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics