Journal of Synthetic Crystals, Volume. 50, Issue 2, 209(2021)
Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications
[1] [1] IZYUMSKAYA N, AVRUTIN V, ZGR , et al. Preparation and properties of ZnO and devices[J]. Physica Status Solidi (b), 2007, 244(5): 1439-1450.
[2] [2] ABRAHAMS S C, BERNSTEIN J L. Remeasurement of the structure of hexagonal ZnO[J]. Acta Crystallographica Section B, 1969, 25(7): 1233-1236.
[3] [3] WANG G, KIEHNE G T, WONG G K L, et al. Large second harmonic response in ZnO thin films[J]. Applied Physics Letters, 2002, 80(3): 401-403.
[4] [4] HUANG F, LIN Z, LIN W W, et al. Research progress in ZnO single-crystal: growth, scientific understanding, and device applications[J]. Chinese Science Bulletin, 2014, 59(12): 1235-1250.
[5] [5] OKA K, SHIBATA H, KASHIWAYA S. Crystal growth of ZnO[J]. Journal of Crystal Growth, 2002, 237/238/239: 509-513.
[6] [6] KLEBER W, MLODOCH R. ber Die Synthese von Zinkit-Einkristallen[J]. Kristall Und Technik, 1966, 1(2): 249-259.
[7] [7] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328.
[8] [8] WANKLYN B M. The growth of ZnO crystals from phosphate and vanadate fluxes[J]. Journal of Crystal Growth, 1970, 7(1): 107-108.
[9] [9] NIELSEN J W, DEARBORN E F. The growth of large single crystals of zinc oxide[J]. The Journal of Physical Chemistry, 1960, 64(11): 1762-1763.
[10] [10] SHILOH M, GUTMAN J. Growth of ZnO single crystals by chemical vapour transport[J]. Journal of Crystal Growth, 1971, 11(2): 105-109.
[11] [11] PIEKARCZYK W, GAZDA S, NIEMYSKI T. The growth of zinc oxide crystals by chemical transport method[J]. Journal of Crystal Growth, 1972, 12(4): 272-276.
[12] [12] MATSUMOTO K, KONEMURA K, SHIMAOKA G. Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents[J]. Journal of Crystal Growth, 1985, 71(1): 99-103.
[13] [13] MATSUMOTO K, SHIMAOKA G. Crystal growth of ZnO by chemical transport[J]. Journal of Crystal Growth, 1988, 86(1/2/3/4): 410-414.
[14] [14] MATSUMOTO K, NODA K. Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent[J]. Journal of Crystal Growth, 1990, 102(1/2): 137-140.
[15] [15] MULLIN J B, MACEWAN W R, HOLLIDAY C H, et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds[J]. Journal of Crystal Growth, 1972, 13/14: 629-634.
[16] [16] REYNOLDS D C, LITTON C W, LOOK D C, et al. High-quality, melt-grown ZnO single crystals[J]. Journal of Applied Physics, 2004, 95(9): 4802-4805.
[17] [17] NAUSE J, NEMETH B. Pressurized melt growth of ZnO boules[J]. Semiconductor Science and Technology, 2005, 20(4): S45-S48.
[18] [18] HELBIG R. ber Die züchtung von grsseren reinen und dotierten ZnO-kristallen aus der gasphase[J]. Journal of Crystal Growth, 1972, 15(1): 25-31.
[19] [19] OHSHIMA E, OGINO H, NIIKURA I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method[J]. Journal of Crystal Growth, 2004, 260(1/2): 166-170.
[20] [20] HUTSON A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Physical Review Letters, 1960, 4(10): 505.
[21] [21] KO H J, CHEN Y F, HONG S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2000, 77(23): 3761-3763.
[22] [22] REYNOLDS D C, COLLINS T C. Excited terminal states of a bound exciton-donor complex in ZnO[J]. Physical Review, 1969, 185(3): 1099.
[23] [23] GUTOWSKI, PRESSER, BROSER. Acceptor-exciton complexes in ZnO: a comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy[J]. Physical Review B, Condensed Matter, 1988, 38(14): 9746-9758.
[24] [24] BLATTNER G, KLINGSHIRN C, HELBIG R, et al. The influence of a magnetic field on the ground and excited states of bound exciton complexes in ZnO[J]. Physica Status Solidi (b), 1981, 107(1): 105-115.
[25] [25] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17): 2230-2232.
[26] [26] OHTA H, KAWAMURA K I, ORITA M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO[J]. Applied Physics Letters, 2000, 77(4): 475-477.[LinkOut]
[27] [27] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4(1): 42-46.
[28] [28] TSUKAZAKI A, OHTOMO A, KAWASAKI M. Blue-light-emitting diodes based on ZnO[J]. Oyo Buturi, 2005, 74(10): 1359-64.
[29] [29] RAIMONDI D L, KAY E. High resistivity transparent ZnO thin films[J]. Journal of Vacuum Science and Technology, 1970, 7(1): 96-99.
[30] [30] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
[31] [31] PARK C H, ZHANG S B, WEI S H. Origin ofp-type doping difficulty in ZnO: the impurity perspective[J]. Physical Review B, 2002, 66(7): 073202.
[32] [32] LOOK D C, CLAFLIN B. P-type doping and devices based on ZnO[J]. Physica Status Solidi (b), 2004, 241(3): 624-630.
[33] [33] LU J G, ZHANG Y Z, YE Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Applied Physics Letters, 2006, 88(22): 222114.
[34] [34] YUAN G D, ZHANG W J, JIE J S, et al. P-type ZnO nanowire arrays[J]. Nano Letters, 2008, 8(8): 2591-2597.
[35] [35] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
[36] [36] KONG X Y, DING Y, YANG R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303(5662): 1348-1351.
[37] [37] HUGHES W L, WANG Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Applied Physics Letters, 2005, 86(4): 043106.
[38] [38] LIM Y S, PARK J W, HONG S T, et al. Carbothermal synthesis of ZnO nanocomb structure[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 100-103.
[39] [39] GAO P X, DING Y, MAI W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J]. Science, 2005, 309(5741): 1700-1704.
[40] [40] GAO P X, WANG Z L. High-yield synthesis of single-crystal nanosprings of ZnO[J]. Small, 2005, 1(10): 945-949.
[41] [41] WANG Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology[J]. ACS Nano, 2008, 2(10): 1987-1992.
[42] [42] GAO P X, WANG Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO[J]. The Journal of Physical Chemistry B, 2002, 106(49): 12653-12658.
[43] [43] HE J H, HO C H, WANG C W, et al. Growth of crossed ZnO nanorod networks induced by polar substrate surface[J]. Crystal Growth & Design, 2009, 9(1): 17-19.
[44] [44] WANG X D, DING Y, LI Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls[J]. The Journal of Physical Chemistry C, 2009, 113(5): 1791-1794.
[45] [45] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105.
[46] [46] WANG X D, LIU J, SONG J H, et al. Integrated nanogenerators in biofluid[J]. Nano Letters, 2007, 7(8): 2475-2479.
[47] [47] WANG X D, GAO Y F, WEI Y G, et al. Output of an ultrasonic wave-driven nanogenerator in a confined tube[J]. Nano Research, 2009, 2(3): 177-182.
[48] [48] QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.
[49] [49] YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39.
[50] [50] NAKAMURA S, SENOH M, IWASA N, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes[J]. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 10B): L1332-L1335.
[51] [51] YU P, TANG Z K, WONG G K, et al. Room temperature stimulated emission from ZnO quantum dot films[J]. Proc 23rd Inter Conf on the Physics of Semiconductor. World Scientific, Singapore, 1996, 2: 1453-1456.
[52] [52] TANG Z K, WONG G K L, YU P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 1998, 72(25): 3270-3272.
[53] [53] SERVICE R F. Will UV lasers beat the blues?[J]. Science, 1997, 276(5314): 895.
[54] [54] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328.
[55] [55] GIBART P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth[J]. Reports on Progress in Physics, 2004, 67(5): 667-715.
[56] [56] CHOI J H, ZOULKARNEEV A, KIM S I, et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates[J]. Nature Photonics, 2011, 5(12): 763-769.
[57] [57] SHEN D Z, MEI Z X, LIANG H L, et al. ZnO-based matierial, heterojunction and photoelectronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 0001b.
[58] [58] HOPFIELD J J, THOMAS D G. On some observable properties of longitudinal excitons[J]. Journal of Physics and Chemistry of Solids, 1960, 12(3/4): 276-284.
[59] [59] REYNOLDS D C, LITTON C W, COLLINS T C. Zeeman effects in the edge emission and absorption of ZnO[J]. Physical Review, 1965, 140(5A): a1726.
[60] [60] TOMZIG E, HELBIG R. Band-edge emission in ZnO[J]. Journal of Luminescence, 1976, 14(3): 403-415.
[61] [61] DAMEN T C, PORTO S P S, TELL B. Raman effect in zinc oxide[J]. Physical Review, 1966, 142(2): 570.
[62] [62] ARGUELLO C A, ROUSSEAU D L, PORTO S P S. First-order Raman effect in wurtzite-type crystals[J]. Physical Review, 1969, 181(3): 1351.
[63] [63] ASHKENOV N, MBENKUM B N, BUNDESMANN C, et al. Infrared dielectric functions and phonon modes of high-quality ZnO films[J]. Journal of Applied Physics, 2003, 93(1): 126-133.
[64] [64] LAVROV E V. Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J]. Physica B: Condensed Matter, 2003, 340/341/342: 195-200.
[65] [65] LAVROV E V, WEBER J, BRRNERT F, et al. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy[J]. Physical Review B, 2002, 66(16): 165205.
[66] [66] MCCLUSKEY M D, JOKELA S J, ZHURAVLEV K K, et al. Infrared spectroscopy of hydrogen in ZnO[J]. Applied Physics Letters, 2002, 81(20): 3807-3809.
[67] [67] ZGR, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301.
[68] [68] CUSC R, ALARCN-LLAD E, IBEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review B, 2007, 75(16): 165202.
[69] [69] LI T T, WANG M Y, LIU X L, et al. Hydrogen impurities in ZnO: shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2402-2407.
[70] [70] LIN W W, CHEN D G, ZHANG J Y, et al. Hydrothermal growth of ZnO single crystals with high carrier mobility[J]. Crystal Growth & Design, 2009, 9(10): 4378-4383.
[71] [71] LAUDISE R A, BALLMAN A A. Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. The Journal of Physical Chemistry, 1960, 64(5): 688-691.
[72] [72] LAUDISE R A, KOLB E D, CAPORASO A J. Hydrothermal growth of large sound crystals of zinc oxide[J]. Journal of the American Ceramic Society, 1964, 47(1): 9-12.
[73] [73] SEKIGUCHI T, MIYASHITA S, OBARA K, et al. Hydrothermal growth of ZnO single crystals and their optical characterization[J]. Journal of Crystal Growth, 2000, 214/215: 72-76.
[74] [74] DILEO L, ROMANO D, SCHAEFFER L, et al. Effect of complexing agent on hydrothermal growth of ZnO crystals[J]. Journal of Crystal Growth, 2004, 271(1/2): 65-73.
[75] [75] DEMIANETS L N, KOSTOMAROV D V, KUZ’MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47(1): S86-S98.
[76] [76] EHRENTRAUT D, SATO H, KAGAMITANI Y, et al. Solvothermal growth of ZnO[J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(4): 280-335.
[77] [77] DEM’YANETS L N, LYUTIN V I. Status of hydrothermal growth of bulk ZnO: latest issues and advantages[J]. Journal of Crystal Growth, 2008, 310(5): 993-999.
[78] [78] ZHANG C L, ZHOU W N, HANG Y, et al. Hydrothermal growth and characterization of ZnO crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1819-1822.
[79] [79] NTEP J M, SAID HASSANI S, LUSSON A, et al. ZnO growth by chemical vapour transport[J]. Journal of Crystal Growth, 1999, 207(1/2): 30-34.
[80] [80] CHENG L, ZHU S, ZHENG W, et al. Ultra-wide spectral range (0.4-8 μm) transparent conductive ZnO bulk single crystals: a leading runner for mid-infrared optoelectronics[J]. Materials Today Physics, 2020, 14: 100244.
[81] [81] LIN W W, DING K, LIN Z, et al. The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility[J]. Cryst Eng Comm, 2011, 13(10): 3338-3341.
[82] [82] ZHENG W, LIN R C, ZHANG D, et al. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism[J]. Advanced Optical Materials, 2018, 6(21): 1800697.
[83] [83] HUANG F, ZHU S, WANG F, et al. Can we transform any insulators into semiconductors? theory, strategy, and example in ZnO[J]. Matter, 2020, 2(5): 1091-1105.
[84] [84] JIN M G, LI Z B, HUANG F, et al. Critical conditions for the formation of p-type ZnO with Li doping[J]. RSC Advances, 2018, 8(54): 30868-30874.
[85] [85] HIRAMATSU H, OHTA H, SUZUKI T, et al. Mechanism for heteroepitaxial growth of transparent P-type semiconductor: LaCuOS by reactive solid-phase epitaxy[J]. Crystal Growth & Design, 2004, 4(2): 301-307.
[86] [86] Look D C, Leedy K D, Tomich D H, et al. Mobility analysis of highly conducting thin films:application to ZnO[J]. Applied Physics Letters, 2010, 96(6): 062102.
[87] [87] MASUDA Y, KONDO M, KOUMOTO K. Site-selective deposition of In2O3 using a self-assembled monolayer[J]. Crystal Growth & Design, 2009, 9(1): 555-561.
[88] [88] MINAMI T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Science and Technology, 2005, 20(4): S35-S44.
[89] [89] IGASAKI Y, SAITO H. Substrate temperature dependence of electrical properties of ZnO∶Al epitaxial films on sapphire (12-10)[J]. Journal of Applied Physics, 1991, 69(4): 2190-2195.
[90] [90] PEI Z L, SUN C, TAN M H, et al. Optical and electrical properties of direct-current magnetron sputtered ZnO∶Al films[J]. Journal of Applied Physics, 2001, 90(7): 3432-3436.
[91] [91] CHAMBERS S A. Epitaxial growth and properties of doped transition metal and complex oxide films[J]. Advanced Materials, 2010, 22(2): 219-248.
[92] [92] KIM H, GILMORE C M, HORWITZ J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Applied Physics Letters, 2000, 76(3): 259-261.
[93] [93] LU J G, YE Z Z, ZENG Y J, et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 2006, 100(7): 073714.
[94] [94] LIU H F, CHUA S J, HU G X, et al. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering[J]. Journal of Applied Physics, 2007, 102(8): 083529.
[95] [95] ZHAN Z B, ZHANG J Y, ZHENG Q H, et al. Strategy for preparing Al-doped ZnO thin film with high mobility and high stability[J]. Crystal Growth & Design, 2011, 11(1): 21-25.
[96] [96] JI X, CHEN L, XU M X, et al. Crystal imperfection modulation engineering for functionalization of wide band gap semiconductor radiation detector[J]. Advanced Electronic Materials, 2018, 4(2): 1700307.
[97] [97] LI T T, ZHU Y M, JI X, et al. Experimental evidence on stability of N substitution for O in ZnO lattice[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8901-8907.
[98] [98] GRNEBOOM A, KLING L, CHRISTIANSEN S, et al. Next-generation imaging of the skeletal system and its blood supply[J]. Nature Reviews Rheumatology, 2019, 15(9): 533-549.
[99] [99] HACHADORIAN R L, BRUZA P, JERMYN M, et al. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light[J]. Nature Communications, 2020, 11(1): 2298.
[100] [100] BLASSE G. Scintillator materials[J]. Chemistry of Materials, 1994, 6(9): 1465-1475.
[101] [101] RODNYI P A, DORENBOS P, VAN EIJK C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 1995, 187(1): 15-29.
[102] [102] XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11: 4329.
[103] [103] CHO S, KIM S, KIM J, et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 2020, 9: 156.
[104] [104] THIRIMANNE H M, JAYAWARDENA K D G I, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response[J]. Nature Communications, 2018, 9(1): 2926.
[105] [105] ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617.
[106] [106] ARNFIELD M R, GABALLA H E, ZWICKER R D, et al. Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 2077-2084.
[107] [107] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride—inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176.
[108] [108] VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator: Ce3+ activated LaCl3[J]. Applied Physics Letters, 2000, 77(10): 1467-1468.
[109] [109] MOSZYNSKI M, KAPUSTA M, WOLSKI D, et al. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 472-477.
[110] [110] SAKAI E J. Recent measurements on scintillator-photodetector systems[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 418-422.
[111] [111] LEHMANN W. Edge emission of n-type conducting ZnO and CdS[J]. Solid-State Electronics, 1966, 9(11/12): 1107-1110.
[112] [112] SOWIAK M M, ROSS D A. Exposure characteristics of thin window cathode ray tubes on electrofax papers[J]. Applied Optics, 1969, 8(Suppl 1): 88-90.
[113] [113] LUCKEY D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120.
[114] [114] BATSCH T, BENGTSON B, MOSZYSKI M. Timing properties of a ZnO(Ga) scintillator (NE843)[J]. Nuclear Instruments and Methods, 1975, 125(3): 443-446.
[115] [115] XU M X, CHEN L, LIU B, et al. Effects of photonic crystal structures on the imaging properties of a ZnO∶Ga image converter[J]. Optics Letters, 2018, 43(22): 5647-5650.
[116] [116] LIN Y C, CHEN T Y, WANG L C, et al. Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells[J]. Journal of the Electrochemical Society, 2012, 159(6): H599-H604.
[117] [117] RUSKE F, PFLUG A, SITTINGER V, et al. Optical modeling of free electron behavior in highly doped ZnO films[J]. Thin Solid Films, 2009, 518(4): 1289-1293.
[118] [118] STEINHAUSER J, FA S, OLIVEIRA N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films[J]. Applied Physics Letters, 2007, 90(14): 142107.
[119] [119] CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68.
[120] [120] BARKER A S. Transverse and longitudinal optic mode study in MgF2 and ZnF2[J]. Physical Review, 1964, 136(5A): a1290.
[121] [121] FAN H Y, SPITZER W, COLLINS R J. Infrared absorption in n-type germanium[J]. Physical Review, 1956, 101(2): 566.
[122] [122] YANG X C. Electrical and optical properties of zinc oxide for scintillator applications[D]. West Virginia: West Virginia University, 2008. DOI:10.33915/etd.2729.
[123] [123] WALUKIEWICZ W, LAGOWSKI L, JASTRZEBSKI L, et al. Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio[J]. Journal of Applied Physics, 1979, 50(2): 899-908.
[124] [124] BAER W S. Free-carrier absorption in reduced SrTiO3[J]. Physical Review, 1966, 144(2): 734.
Get Citation
Copy Citation Text
HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang. Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications[J]. Journal of Synthetic Crystals, 2021, 50(2): 209
Category:
Received: Dec. 28, 2020
Accepted: --
Published Online: Mar. 30, 2021
The Author Email:
CSTR:32186.14.