Remote Sensing Technology and Application, Volume. 39, Issue 5, 1151(2024)

Remote Sensing Image Sample Augmentation Method based on Pix2pix Network

Weiyi XIE, Xijie XU, Xiaoping RUI, and Yarong ZOU
Author Affiliations
  • School of Earth Sciences and Engineering, Hohai University, Nanjing211100, China
  • show less
    References(34)

    [1] ZOU Q, NI L, ZHANG T et al. Deep learning based feature sele-ction for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters, 12, 2321-2325(2015).

    [2] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning. Journal of Big Data, 6, 60(2019).

    [3] LIN Chengchuang, SHAN Chun, ZHAO Gansen et al. Review of image data augmentation in computer vision. Journal of Frontiers of Computer Science and Technology, 15, 583-611(2021).

    [4] MA Dongao, TANG Ping, ZHAO Lijun et al. Review of data augmentation for image in deep learning. Journal of Image and Graphics, 26, 487-502(2021).

    [5] ZHONG Z, ZHENG L, KANG G et al. Random Erasing Data Augmentation, 13001-13008(2020).

    [7] WANG Hao, ZHANG Ye, SHEN Honghai et al. Review of image enhancement algorithms. Chinese Optics, 10, 438-448(2017).

    [9] BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E et al. Albumentations: Fast and flexible image augmentations. Information, 11, 125(2020).

    [11] YUN S, HAN D, OH S J et al. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, 6023-6032(2019).

    [12] DWIBEDI D, MISRA I, Cut HEBERT M.. Paste and Learn: Surprisingly Easy Synthesis for Instance Detection, 1301-1310(2017).

    [13] JADERBERG M, SIMONYAN K, ZISSERMAN A et al. Spatial Transformer Networks, 12, 2017-2025(2015).

    [14] LI B, WU F, LIM S N et al. On Feature Normalization and Data Augmentation, 12378-12387(2021).

    [15] BERTHELOT D, CARLINI N, GOODFELLOW I J et al. MixMatch: A Holistic Approach to Semi-supervised Learning, 14, 5050-5060(2019).

    [16] HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications, 95, 43-56(2018).

    [17] MA C G, GUO Y Y, WU P et al. Review of image enhancement based on generative adversarial networks. Netinfo Security, 19, 10-21(2019).

    [18] HAN C, MURAO K, SATOH S et al. Learning more with less: GAN-based medical image augmentation. Medical Imaging Technology, 37, 137-142(2019).

    [19] FRID-ADAR M, DIAMANT I, KLANG E et al. GAN-based synthetic medical image augmentation for increased CNN performance in Liver Lesion Classification. Neurocomputing, 321, 321-331(2018).

    [20] LIU B, SU S, WEI J. The Effect of data augmentation methods on pedestrian object detection. Electronics, 11, 3185(2022).

    [21] LU Y, CHEN D, OLANIYI E et al. Generative Adversarial Networks (GANs) for image augmentation in agriculture: A systematic review. Computers and Electronics in Agriculture, 200(2022).

    [22] LUO M D, CAO J, MA X et al. FA-GAN:Face aug-mentation GAN for deformation-invariant face recognition. IEEE Transactions on Information Forensics and Security, 16, 2341-2355(2021).

    [23] CUBUK E D, ZOPH B, MANE D et al. AutoAugment: Learning augmentation strategies from data, 113-123(2019).

    [24] KIM I, KIM T et al. Fast autoaugment. Neural Information Processing Systems(2019).

    [25] LIANG E, STOICA I et al. Population based augmentation: Efficient learning of augmentation policy schedules. ArXiv(2019).

    [26] MA D, TANG P, ZHAO L. SiftingGAN: Generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16, 1046-1050(2019).

    [27] ISOLA P, ZHU J Y et al. Image-to-image Translation with Conditional Adversarial Networks, 5967-5976(2017).

    [28] GOODFELLOW I, POUGET-ABADIE J, MIRZA M et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2020).

    [29] LI Hong’an, ZHENG Qiaoxue, ZHANG Jing et al. Pix2Pix-based grayscale image coloring method. Journal of Computer-Aided Design & Computer Graphics, 33, 929-938(2021).

    [30] GAO Y, LI J M, XU J Z et al. Terrain surface texture generation networks for user semantics customization. Journal of System Simulation, 35, 2077-2086(2023).

    [31] PARK J E, KIM G, HONG S. Green band generation for advan-ced baseline imager sensor using Pix2Pix with advanced baseline imager and advanced Himawari imager observations. IEEE Transactions on Geoscience and Remote Sensing, 59, 6415-6423(2021).

    [32] GONG P, LIU H, ZHANG M et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64, 370-373(2019).

    [33] MIRZA M, OSINDERO S. Conditional generative adversarial nets. Computer Science, 2672-2680(2014).

    [34] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation(2015).

    Tools

    Get Citation

    Copy Citation Text

    Weiyi XIE, Xijie XU, Xiaoping RUI, Yarong ZOU. Remote Sensing Image Sample Augmentation Method based on Pix2pix Network[J]. Remote Sensing Technology and Application, 2024, 39(5): 1151

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 18, 2023

    Accepted: --

    Published Online: Jan. 7, 2025

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.5.1151

    Topics