OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 23, Issue 1, 15(2025)
Core Error Effects in Scanless and Lensless Flexible Optical Endoscopic Imaging
[1] [1] Choi W, Kang M, Hong J H, et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues[J]. Nature communications, 2022, 13(1): 4469.
[2] [2] Lee C M, Engelbrecht C J, Soper T D, et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging[J]. Journal of biophotonics, 2010, 3(5-6): 385-407.
[4] [4] Stasio N, Moser C, Psaltis D. Calibration-free imaging through a multicore fiber using speckle scanning microscopy[J]. Optics letters, 2016, 41(13): 3078-3081.
[5] [5] Stasio N, Conkey D B, Moser C, et al. Light control in a multicore fiber using the memory effect[J]. Optics express, 2015, 23(23): 30532-30544.
[7] [7] Kim D, Moon J, Kim M, et al. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle[J]. Optics Letters, 2014, 39(7): 1921-1924.
[8] [8] imr T,Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature communications,2012,3(1):1027.
[9] [9] Bianchi S, Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy[J]. Lab on a Chip, 2012, 12(3): 635-639.
[10] [10] Kim Y, Warren S C, Stone J M, et al. Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(3): 171-178.
[11] [11] Sivankutty S, Tsvirkun V, Bouwmans G, et al. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber[J]. Optics Letters, 2016, 41(15): 3531-3534.
[12] [12] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 2015, 9(4): 253-258.
[13] [13] Porat A, Andresen E R, Rigneault H, et al. Widefield lensless endoscopy via speckle correlations[J]. Optics and Photonics News, 2016, 27(12): 41.
[14] [14] Kuschmierz R, Scharf E, Ortegn-Gonzlez D F, et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks[J]. Light: Advanced Manufacturing, 2021, 2(4): 415-424.
[15] [15] Kakkava E, Rahmani B, Borhani N, et al. Imaging through multimode fibers using deep learning: The effects of intensity versus holographic recording of the speckle pattern[J]. Optical Fiber Technology, 2019, 52: 101985.
[16] [16] Rahmani B, Oguz I, Tegin U, et al. Learning to image and compute with multimode optical fibers[J]. Nanophotonics, 2022, 11(6): 1071-1082.
[17] [17] Borhani N, Kakkava E, Moser C, et al. Learning to see through multimode fibers[J]. Optica, 2018, 5(8): 960-966.
[18] [18] Rahmani B, Loterie D, Konstantinou G, et al. Multimode optical fiber transmission with a deep learning network[J]. Light: Science & Applications, 2018, 7(1): 69.
[20] [20] Steelman Z A, Kim S, Jelly E T, et al. Comparison of imaging fiber bundles for coherence-domain imaging[J]. Applied Optics, 2018, 57(6): 1455-1462.
[21] [21] Zhao Z, Huang J, Wu S, et al. Experimental demonstration of tri-aperture differential synthetic aperture ladar[J]. Optics Communications, 2017, 389: 181-188.
[22] [22] Li Y, Wu Q, Jiang J, et al. A High-frequency vibration error compensation method for terahertz SAR imaging based on short-time fourier transform[J]. Applied Sciences, 2021, 11(22): 10862.
Get Citation
Copy Citation Text
YANG Hao-ran, CUI Zhong-ming, WU Zhuang, SONG Zi-qi, WU Jin. Core Error Effects in Scanless and Lensless Flexible Optical Endoscopic Imaging[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2025, 23(1): 15
Category:
Received: Jun. 13, 2024
Accepted: Feb. 25, 2025
Published Online: Feb. 25, 2025
The Author Email:
CSTR:32186.14.