Acta Photonica Sinica, Volume. 53, Issue 8, 0801004(2024)
Extended Resampling of Subharmonic Atmospheric Turbulence Simulation Phase Screen Research
[1] JUAN ANTONIO R, ANICETO B, ADOLFO C. Numerical simulation of long-path spherical wave propagation in three-dimensional random media[J]. Optical Engineering, 38, 1462-1469(1999).
[2] XIANG Jingsong. High-frequency error compensation method for the fast fourier transform-based turbulent phase screen[J]. Acta Optica Sinica, 34, 24-28(2014).
[3] CAI Dongmei, WANG Kun, JIA Peng et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 63, 231-236(2014).
[4] HERMAN B J, STRUGALA L A. Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence[C], 1221, 183-192(1990).
[5] LANE R G, GLINDEMANN A, DAINTY J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 2, 209-224(1992).
[6] ERIK M J, DONALD T G B. Simulation of stellar speckle imaging[C], 2200, 372-383(1994).
[7] JAUME R, FEDERICO D. Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence[C], 5891, 1-12(2005).
[8] WILLIAM P B, RYAN N G. Turbulence phase screens based on polar-logarithmic spectral sampling[J]. Applied Optics, 52, 4672-4680(2013).
[9] JONAS K, CHRISTOPH F, SEBASTIAN R. A new approach to nonuniform sampling of bounded atmospheric turbulence spectra[C](2020).
[10] XIANG Jingsong. Fast and accurate simulation of the turbulent phase screen using fast Fourier transform[J]. Optical Engineering, 53, 16-110(2014).
[11] SORABH C, JYOTIRMAY P, ANAMPARAMBU N P et al. Generalized approach to compensate for low- And high-frequency errors in fast Fourier transform-based phase screen simulations[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 025007(2021).
[12] ROBERTJ N. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 66, 207-211(1976).
[13] NICOLAS R. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 29, 1174-1180(1990).
[14] CHEN Lixia, HU Xiaochuan, HAN Kai et al. Improvement method for fitting high-frequency phase by Zernike polynomials[J]. Acta Optica Sinica, 36, 125-132(2016).
[15] ALESSANDRO B, ANGELO C, ANDREA M. Multiscale stochastic approach for phase screens synthesis[J]. Applied Optics, 50, 4124-4133(2011).
[16] SCHWARTZ C, BAUM G, RIBAK E N. Turbulence-degraded wave fronts as fractal surfaces[J]. Journal of the Optical Society of America A: Optics and Image Science, 11, 444-451(1994).
[17] XIANG Jingsong, ZHANG Xiaolei, ZHANG Miaomiao et al. Generation of infinite turbulent phase screen[J]. High Power Laser and Particle Beams, 24, 1071-1075(2012).
[18] FENG Fan, LI Changwei. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 37, 35-43(2017).
[19] HOLST G C, 阎吉祥, 俞信, 解天宝[M]. 光电成像系统性能(2000).
HOLST G C, YAN Jixiang, YU Xin, XIE Tianbao[M]. Electro-optical imaging system performance(2000).
Get Citation
Copy Citation Text
Wenyong LU, Yan SHI, Jianyong CHEN, Chunlian ZHAN, Shangzhong JIN. Extended Resampling of Subharmonic Atmospheric Turbulence Simulation Phase Screen Research[J]. Acta Photonica Sinica, 2024, 53(8): 0801004
Category:
Received: Dec. 14, 2023
Accepted: Mar. 21, 2024
Published Online: Oct. 15, 2024
The Author Email: Yan SHI (shiyan@cjlu.edu.cn)