Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0615002(2023)
Working Condition Recognition Based on Lightweight Convolution Vision Transformer Network for Antimony Flotation Process
Fig. 2. Flotation pictures of different working conditions. (a) Ⅰ; (b) Ⅱ; (c) Ⅲ; (d) Ⅳ; (e) Ⅴ; (f) Ⅵ
Fig. 4. L-CVT network structure. (a) L-Conv module (depth convolution step size is 1); (b) L-Conv module (depth convolution step size is 2); (c) Conv-VIT module
Fig. 8. Process of flotation data collection. (a) Flotation site; (b) flotation tank; (c) collection terminal of flotation data
Fig. 9. Image flip transformation. (a) Original image; (b) horizontal flip; (c) filp vertically; (d) rotate clockwise 90°
Fig. 12. Comparison curves of identification accuracy of antimony flotation condition based on different networks
Fig. 13. Confusion matrix results of different models. (a) L-CVT; (b) AlexNet; (c) VGG16; (d) ResNet18
Fig. 14. ROC curves and AUC values of different networks. (a) L-CVT; (b) AlexNet; (c) VGG16; (d) ResNet18
|
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Yifei Chen, Yaoyi Cai, Shiwen Li. Working Condition Recognition Based on Lightweight Convolution Vision Transformer Network for Antimony Flotation Process[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0615002
Category: Machine Vision
Received: Dec. 20, 2021
Accepted: Jan. 17, 2022
Published Online: Mar. 31, 2023
The Author Email: Yaoyi Cai (cyy@hunnu.edu.cn)