Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0615002(2023)

Working Condition Recognition Based on Lightweight Convolution Vision Transformer Network for Antimony Flotation Process

Yifei Chen, Yaoyi Cai*, and Shiwen Li
Author Affiliations
  • College of Engineering and Design, Hunan Normal University, Changsha 410083, Hunan, China
  • show less
    Figures & Tables(23)
    Flow chart of antimony flotation
    Flotation pictures of different working conditions. (a) Ⅰ; (b) Ⅱ; (c) Ⅲ; (d) Ⅳ; (e) Ⅴ; (f) Ⅵ
    Relationship between working condition and grade
    L-CVT network structure. (a) L-Conv module (depth convolution step size is 1); (b) L-Conv module (depth convolution step size is 2); (c) Conv-VIT module
    Depth separable convolution
    Transformer. (a) Transformer structure; (b) multi-head attention
    Global representation of pixel information by Conv-VIT module
    Process of flotation data collection. (a) Flotation site; (b) flotation tank; (c) collection terminal of flotation data
    Image flip transformation. (a) Original image; (b) horizontal flip; (c) filp vertically; (d) rotate clockwise 90°
    MixUp rendering
    CutMix rendering
    Comparison curves of identification accuracy of antimony flotation condition based on different networks
    Confusion matrix results of different models. (a) L-CVT; (b) AlexNet; (c) VGG16; (d) ResNet18
    ROC curves and AUC values of different networks. (a) L-CVT; (b) AlexNet; (c) VGG16; (d) ResNet18
    Visualization results of feature maps of four kinds of networks
    • Table 1. Feature description of different operating conditions

      View table

      Table 1. Feature description of different operating conditions

      CategoryFlotation conditionCategory feature description
      Class ⅠAbnormalThe bubbles are very sparse;the particle loading is much lower than normal and the bubbles are with gray appearance
      Class ⅡPoorThe bubbles are sparse;the particle loading is a little lower than normal and the bubbles are with gray-black appearance
      Class ⅢQualifiedThe bubbles are medium in size and messy distributed;the particle loading is normal and the bubbles are with black appearance
      Class ⅣMediumThe bubbles are medium in size and evenly distributed;the particle loading is normal and the bubbles are with bright appearance
      Class ⅤGoodThe bubbles are large in size and evenly distributed;the particle loading is higher than normal and the bubbles are with bright appearance
      Class ⅥExcellentThe bubble are the largest;the particle loading is much higher than normal and the froth is viscous;the bubbles are with water-shiny appearance
    • Table 2. Experiment of data augmentation comparison

      View table

      Table 2. Experiment of data augmentation comparison

      MethodTop-1 accuacry /%
      Flip89.64
      MixUp90.83
      CutMix91.39
      Filp+MixUp+CutMix93.56
      None86.55
    • Table 3. Network parameters of L-CVT

      View table

      Table 3. Network parameters of L-CVT

      Layer nameOutput sizeOutput channelsNumber
      Conv-3×3128×128321
      L-Conv(stride is 2)64×64481
      L-Conv(stride is 1)64×64482
      L-Conv(stride is 2)32×32641
      Conv-VIT(M=2)32×32641
      L-Conv(stride is 2)16×16961
      Conv-VIT(M=4)16×16961
      L-Conv(stride is 2)8×81281
      Conv-VIT(M=4)8×81281
      Conv-1×18×83841
      MLP1×161
      FLOPs:6.01×1010Params:2.33 MB
    • Table 4. Main parameters of AlexNet, VGG16, ResNet18

      View table

      Table 4. Main parameters of AlexNet, VGG16, ResNet18

      AlexNetVGG16ResNet18
      Layer-1:11×11,96;maxpool-3×3Layer-1:3×3, 643×3, 64;maxpool-2×2Layer-1:7×7,64;maxpool-3×3
      Layer-2:5×5,96;maxpool-3×3Layer-2:3×3, 1283×3, 128;maxpool-2×2Layer-2:3×3, 643×3, 64×3
      Layer-3:3×3,384Layer-3:3×3, 2563×3, 2563×3, 256;maxpool-2×2Layer-3:3×3, 1283×3, 128×4
      Layer-4:3×3,384Layer-4:3×3, 5123×3, 5123×3, 512;maxpool-2×2Layer-4:3×3, 2563×3, 256×6
      Layer-5:3×3,256;maxpool-3×3Layer-5:3×3, 5123×3, 5123×3, 512;maxpool-2×2Layer-5:3×3, 5123×3, 512×3
      FC-1:2048FC-1:4096Pooling layer:average pool
      FC-2:2048FC-2:4096FC-1:6
      FC-3:6FC-3:6Classifier:Softmax
      Classifier:SoftmaxClassifier:Softmax
    • Table 5. Identificatiton accuracy of antimony flotation condition based on different networks

      View table

      Table 5. Identificatiton accuracy of antimony flotation condition based on different networks

      NetworkL-CVTAlexNetVGG16ResNet
      Top-1 accuracy /%93.5678.3385.1188.33
    • Table 6. Computational complexity of different networks

      View table

      Table 6. Computational complexity of different networks

      NetworkParams /MBFLOPs /109
      L-CVT2.3860.10
      AlexNet33.6693.31
      VGG1646.295146.08
      ResNet1811.18152.02
    • Table 7. Evaluation results of different networks

      View table

      Table 7. Evaluation results of different networks

      NetworkPrecision /%Recall /%F1-Score /%
      L-CVT93.5694.5194.03
      AlexNet78.3377.3777.85
      VGG1685.1185.4685.28
      ResNet1888.3389.7489.03
    • Table 8. Ablation experiment

      View table

      Table 8. Ablation experiment

      MethodAccuracy /%F1-score /%
      Base75.2274.60
      Base + A88.7888.70
      Base + B81.4481.70
      Base + A + B(proposed network)93.5694.03
    Tools

    Get Citation

    Copy Citation Text

    Yifei Chen, Yaoyi Cai, Shiwen Li. Working Condition Recognition Based on Lightweight Convolution Vision Transformer Network for Antimony Flotation Process[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0615002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 20, 2021

    Accepted: Jan. 17, 2022

    Published Online: Mar. 31, 2023

    The Author Email: Yaoyi Cai (cyy@hunnu.edu.cn)

    DOI:10.3788/LOP213293

    Topics