Optics and Precision Engineering, Volume. 32, Issue 24, 3537(2024)
Research on high sensitivity methane detection technology in coal mines based on frequency modulation
[2] WUEBBLES D J, HAYHOE K. Atmospheric methane and global change[J]. Earth Science Reviews, 57, 177-210(2002).
[3] LI J, KANG H, SHA H W. Methane emission control and environmental management in coal mining industry[J]. Environmental Impact Assessment, 46, 19-23(2024).
李佳, 康浩, 沙焕伟. 煤炭行业甲烷排放控制与环境管理[J]. 环境影响评价, 46, 19-23(2024).
[4] [M]. Coal Mine Safety Regulations(2016).
[M]. 煤矿安全规程(2016).
[5] 梁运涛, 陈成锋, 田富超. 甲烷气体检测技术及其在煤矿中的应用[J]. 煤炭科学技术, 49, 40-48(2021).
LIANG Y T, CHEN C F, TIAN F C et al. Methane gas detection technology and its application in coal mines[J]. Coal Science and Technology, 49, 40-48(2021).
[6] CHEN J, DU Z H, SUN T et al. Self-corrected frequency modulation spectroscopy immune to phase random and light intensity fluctuation[J]. Optics Express, 27, 30700-30709(2019).
[7] BJORKLUND G C, LEVENSON M D, LENTH W et al. Frequency modulation (FM) spectroscopy[J]. Applied Physics B, 32, 145-152(1983).
[8] DU J, SUN Y G. Long term frequency stability study of 1.57μm semiconductor laser[J]. Optical Technique, 47, 299-304(2021).
杜娟, 孙延光. 1.57μm半导体激光器长期频率稳定性研究[J]. 光学技术, 47, 299-304(2021).
[9] CHEN J. Study on CO Detection Technology of Combustion Products by Frequency Modulation Spectroscopy[D](2019).
陈健. 频率调制光谱的燃烧产物CO检测技术研究[D](2019).
[10] MURAKAMI F, TUKUDA M, SHOJI Y et al. Frequency stabilization of 633-nm He-Ne laser by using frequency modulation spectroscopy of 127I2 enhanced by an external optical cavity[J]. Electronics and Communications in Japan (Part II: Electronics), 83, 1-9(2000).
[11] VOTSMEIER M, SONG S, DAVIDSON D F et al. Sensitive detection of NH2 in shock tube experiments using frequency modulation spectroscopy[J]. International Journal of Chemical Kinetics, 31, 445-453(1999).
HE J K, XIE Z H et al. A comprehensive report on China's long-term low-carbon development strategy and transformation path research[J]. China Population, Resources and Environment, 30, 1-25(2020).
何建坤, 解振华. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 30, 1-25(2020).
[12] LI J Y, YU Z W, DU Z H et al. Standoff chemical detection using laser absorption spectroscopy: a review[J]. Remote Sensing, 12, 2771(2020).
[13] LI W C, DAI Z X, LU Z et al. Research on signal processing algorithm of the laser frequency stabilization based on frequency modulation spectroscopy[J]. Semiconductor Optoelectronics, 36, 1014-1018(2015).
李文辰, 代作晓, 鲁湛. 频率调制光谱稳频法的信号处理算法研究[J]. 半导体光电, 36, 1014-1018(2015).
[14] KAN R F, LIU W Q, ZHANG Y J et al. Absorption measurements of ambient methane with tunable diode laser[J]. Acta Physica Sinica, 54, 1927-1930(2005).
阚瑞峰, 刘文清, 张玉钧. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量[J]. 物理学报, 54, 1927-1930(2005).
[15] ZHANG L, LI X, WANG Z B et al. Design of digital phase-locked circuit for TDLAS methane telemetry[J]. Transducer and Microsystem Technologies, 38, 89-92, 96(2019).
张亮, 李晓, 王志斌. 基于TDLAS甲烷遥测的数字锁相电路设计[J]. 传感器与微系统, 38, 89-92, 96(2019).
[16] HUANG Y, FU W, YANG S et al. Highly sensitive measurement of trace methane gas using mid-infrared tunable diode laser absorption spectroscopymethod[J]. Microwave and Optical Technology Letters, 66, 33701(2024).
[17] LI G L, SONG Y M, ZHAO H et al. A near-infrared multi-gas sensor based on IWTD-CEEMDAN and WOA-BiLSTM for detection of CH4 and NH3 leaked in industrial production[J]. Infrared Physics & Technology, 131, 104695(2023).
Get Citation
Copy Citation Text
Xiangge LI, Mai HU, Tongyu ZHU, Yong LIU, Liangquan JIA. Research on high sensitivity methane detection technology in coal mines based on frequency modulation[J]. Optics and Precision Engineering, 2024, 32(24): 3537
Category:
Received: Jun. 26, 2024
Accepted: --
Published Online: Mar. 11, 2025
The Author Email: Liangquan JIA (02426@zjhu.edu.cn)