NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040003(2023)
Extremely strong magnetic field and QCD phase diagram
[1] ZHANG Sanhui[M]. College physics-mechanics, heat, 49(2018).
[2] YAN Liuming, ZHU Suhua[M]. Theory and practice of molecular dynamics simulation, 49-50(2013).
[3] Kincaid J M, Cohen E G D. Phase diagrams of liquid helium mixtures and metamagnets: experiment and mean field theory[J]. Physics Reports, 22, 57-143(1975).
[4] Fetter A L, Walecka J D[M]. Quantum theory of many-particle systems(1971).
[5] Yu J, Le C C, Li Z W et al. Coexistence of ferromagnetism, antiferromagnetism, and superconductivity in magnetically anisotropic (Eu, La)FeAs2[J]. npj Quantum Materials, 6, 63(2021).
[6] Kapusta J I, Gale C[M]. Finite-temperature field theory: principles and applications(2006).
[7] Liu C, Deng X G, Ma Y G. Density fluctuations in intermediate-energy heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 52(2022).
[8] Yagi K, Hatsuda T, Miake Y[M]. Quark-gluon plasma: From big bang to little bang(2005).
[9] Aoki Y, Endrődi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).
[10] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).
[11] Collaboration S, Adamczyk L, Adkins J K et al. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program[J]. Physical Review C, 96, 044904(2017).
[12] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[14] Wu S J, Shen C, Song H C. Dynamically exploring the QCD matter at finite temperatures and densities: a short review[J]. Chinese Physics Letters, 38, 081201(2021).
[15] Klevansky S P. The Nambu—Jona-Lasinio model of quantum chromodynamics[J]. Reviews of Modern Physics, 64, 649-708(1992).
[16] Hatsuda T, Kunihiro T. QCD phenomenology based on a chiral effective Lagrangian[J]. Physics Reports, 247, 221-367(1994).
[17] Deng W T, Huang X G. Event-by-event generation of electromagnetic fields in heavy-ion collisions[J]. Physical Review C - Nuclear Physics, 85, 044907(2012).
[18] Olausen S A, Kaspi V M. The McGILL magnetar catalog[J]. The Astrophysical Journal Letters Supplement Series, 212, 6(2014).
[19] Manchester R N, Hobbs G B, Teoh A et al. The Australia telescope national facility pulsar catalogue[J]. The Astronomical Journal, 129, 1993-2006(2005).
[20] Grasso D, Rubinstein H R. Magnetic fields in the early Universe[J]. Physics Reports, 348, 163-266(2001).
[21] WANG Zhicheng[M]. Thermodynamics and statistical physics(2019).
[22] Landau L D, Lifshitz E M[M]. Statistical physics I, 63(2015).
[23] Landau L D, Lifshitz E M[M]. Quantum mechanics, 413(2008).
[24] Gusynin V P, Miransky V A, Shovkovy I A. Catalysis of dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions[J]. Physical Review Letters, 73, 3499-3502(1994).
[25] Kharzeev D E, McLerran L D, Warringa H J. The effects of topological charge change in heavy ion collisions: “Event by event P”[J]. Nuclear Physics A, 803, 227-253(2008).
[26] Son D T, Zhitnitsky A R. Quantum anomalies in dense matter[J]. Physical Review D, 70, 074018(2004).
[27] Hattori K, Yin Y. Charge redistribution from anomalous magnetovorticity coupling[J]. Physical Review Letters, 117, 152002(2016).
[28] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).
[29] Liu Y C, Huang X G. Anomalous chiral transports and spin polarization in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 56(2020).
[30] Li Q, Kharzeev D E, Huang Y et al. Observation of the chiral magnetic effect in ZrTe5[J]. Nature Physics, 12, 550-554(2016).
[32] Adam J, Adamczyk L, Adams J R et al. Methods for a blind analysis of isobar data collected by the STAR collaboration[J]. Nuclear Science and Techniques, 32, 48(2021).
[33] Wang F Q, Zhao J. Search for the chiral magnetic effect in heavy ion collisions[J]. Nuclear Science and Techniques, 29, 179(2018).
[34] ZHANG Jie. A new horizon high field physics[J]. Physics, 26, 643-649(1997).
[35] Cao G Q. Recent progresses on QCD phases in a strong magnetic field: views from Nambu: Jona-Lasinio model[J]. The European Physical Journal A, 57, 264(2021).
[36] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I[J]. Physical Review, 122, 345-358(1961).
[37] Peskin M E, Schroeder D V[M]. Introduction to quantum field theory(1995).
[38] Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. Journal of Physics C: Solid State Physics, 6, 1181-1203(1973).
[39] Yanfeng LYU, CHEN Xi, XUE Qikun. Introduction to topological insulator[J]. Physics and Engineering, 22, 7-10, 18(2012).
[40] Fukushima K, Skokov V. Polyakov loop modeling for hot QCD[J]. Progress in Particle and Nuclear Physics, 96, 154-199(2017).
[41] Endrödi G. Critical point in the QCD phase diagram for extremely strong background magnetic fields[J]. Journal of High Energy Physics, 2015, 173(2015).
[42] Bali G S, Bruckmann F, Endrődi G et al. QCD quark condensate in external magnetic fields[J]. Physical Review D, 86, 071502(2012).
[43] Chao J Y, Chu P C, Huang M. Inverse magnetic catalysis induced by sphalerons[J]. Physical Review D, 88, 054009(2013).
[44] Cao G Q, He L Y, Zhuang P F. Collective modes and Kosterlitz-Thouless transition in a magnetic field in the planar Nambu: Jona-Lasino model[J]. Physical Review D, 90, 056005(2014).
[45] Fukushima K, Hidaka Y. Magnetic catalysis versus magnetic inhibition[J]. Physical Review Letters, 110, 031601(2013).
[46] Farias R L S, Gomes K P, Krein G I et al. Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter[J]. Physical Review C, 90, 025203(2014).
[47] Schwinger J S. On gauge invariance and vacuum polarization[J]. Physical Review, 82, 664-679(1951).
[48] Fradkin E S, Gitman D M, Shvart͡sman S M[M]. Quantum electrodynamics: with unstable vacuum(1991).
[49] Yamamoto A. Overview of external electromagnetism and rotation in lattice QCD[J]. The European Physical Journal A, 57, 211(2021).
[50] Adam J, Adamczyk L, Adams J R et al. Measurement of e+e- momentum and angular distributions from linearly polarized photon collisions[J]. Physical Review Letters, 127, 052302(2021).
[51] Cao G Q. Effects of a parallel electromagnetic field in the three-flavor Nambu--Jona-Lasinio model[J]. Physical Review D, 101, 094027(2020).
[52] Cao G Q, Huang X G. Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum[J]. Physics Letters B, 757, 1-5(2016).
[53] Cao G Q. The electromagnetic field effects in in-out and in-in formalisms[J]. Physics Letters B, 806, 135477(2020).
[54] Nickel D. Inhomogeneous phases in the Nambu-Jona-Lasinio and quark-meson model[J]. Physical Review D, 80, 074025(2009).
[55] Alford M G, Schmitt A, Rajagopal K et al. Color superconductivity in dense quark matter[J]. Reviews of Modern Physics, 80, 1455-1515(2008).
[56] Son D T, Stephanov M A. QCD at finite isospin density[J]. Physical Review Letters, 86, 592-595(2001).
[57] Kogut J B, Sinclair D K. Lattice QCD at finite isospin density at zero and finite temperature[J]. Physical Review D, 66, 034505(2002).
[58] He L Y, Jin M, Zhuang P F. Pion condensation in baryonic matter: from Sarma phase to Larkin–Ovchinnikov–Fudde–Ferrell Phase[J]. Physical Review D, 74, 036005(2006).
[59] Frolov I E, Zhukovsky V C, Klimenko K G. Chiral density waves in quark matter within the Nambu-Jona-Lasinio model in an external magnetic field[J]. Physical Review D, 82, 076002(2010).
[60] McLerran L, Pisarski R D. Phases of dense quarks at large[J]. Nuclear Physics A, 796, 83-100(2007).
[61] Vovchenko V, Brandt B B, Cuteri F et al. Pion condensation in the early universe at nonvanishing lepton flavor asymmetry and its gravitational wave signatures[J]. Physical Review Letters, 126, 012701(2021).
[62] Cao G Q, He L Y, Zhang P M. Reentrant pion superfluidity and cosmic trajectories within a PNJL model[J]. Physical Review D, 104, 054007(2021).
[64] Cao G Q, Zhuang P F. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity[J]. Physical Review D, 92, 105030(2015).
[65] Cao G Q, He L Y, Huang X G. Quarksonic matter at high isospin density[J]. Chinese Physics C, 41, 051001(2017).
[66] Collaboration T S. Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid[J]. Nature, 548, 62-65(2017).
[67] Cohen T D. Functional integrals for QCD at nonzero chemical potential and zero density[J]. Physical Review Letters, 91, 222001(2003).
[68] Wang L X, Jiang Y, He L et al. Chiral vortices and pseudoscalar condensation due to rotation[J]. Physical Review D, 100, 114009(2019).
[69] Liu Y, Zahed I. Pion condensation by rotation in a magnetic field[J]. Physical Review Letters, 120, 032001(2018).
[70] Cao G Q, He L Y. Rotation induced charged pion condensation in a strong magnetic field: a Nambu–Jona-Lasino model study[J]. Physical Review D, 100, 094015(2019).
[71] Cao G Q. Charged rho superconductor in the presence of magnetic field and rotation[J]. The European Physical Journal A, 81, 148(2021).
[72] Chernodub M N. Spontaneous electromagnetic superconductivity of vacuum in a strong magnetic field: evidence from the Nambu-jona-lasinio model[J]. Physical Review Letters, 106, 142003(2011).
[73] Hidaka Y, Yamamoto A. Charged vector mesons in a strong magnetic field[J]. Physical Review D, 87, 094502(2013).
[74] Ding H T, Li S T, Mukherjee S et al. Meson masses in external magnetic fields with HISQ fermions[J]. PoS LATTICE, 2020, 250(2019).
[75] Cao G Q. Magnetic catalysis effect prevents vacuum superconductivity in strong magnetic fields[J]. Physical Review D, 100, 074024(2019).
[76] Chen H L, Fukushima K, Huang X G et al. Analogy between rotation and density for Dirac fermions in a magnetic field[J]. Physical Review D, 93, 104052(2016).
Get Citation
Copy Citation Text
Gaoqing CAO. Extremely strong magnetic field and QCD phase diagram[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040003
Category: Research Articles
Received: Dec. 5, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: