The Journal of Light Scattering, Volume. 36, Issue 3, 290(2024)
Raman spectrometer and its miniaturization
[1] [1] Parker S F, Refson K, Bewley R I, et al. Assignment of the vibrational spectra of lithium hydroxide monohydrate, LiOH·H2O[J]. Journal of Chemical Physics, 2011, 134: 084503.
[2] [2] Sidorov N V, Palatnikov M N, Yanichev A A, et al. Structural disorder of LiNbO3: B Crystals and its manifestation in Raman Spectra[J]. Journal of Applied Spectroscopy,2016,83(5): 750-756.
[3] [3] Li J, Li R, Dong H, et al. Carbon isotopic compositions in carbon dioxide measured by micro-Laser Raman spectroscopy[J]. Journal of Applied Spectroscopy,2017,84(2): 237-241.
[4] [4] Doty K C, Muro C K, Bueno J, et al. What can Raman spectroscopy do for criminalistics[J]. Journal of Raman Spectroscopy, 2016, 47(1): 39-50.
[5] [5] Muehlethaler C, Leona M, Lombardi J R. Review of surface enhanced Raman scattering applications in forensic science[J]. Analytical Chemistry, 2016, 88(1): 152-169.
[6] [6] Eliasson C, Macleod N A, Jayes L C, et al. Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(2): 221-229.
[7] [7] Ramakrishnaiah R, Rehman G ur, Basavarajappa S, et al. Applications of Raman spectroscopy in Dentistry: Analysis of Tooth Structure[J]. Applied Spectroscopy Reviews, 2014, 50(4): 332-350.
[8] [8] Pandey R, Paidi S K, Valdez T A, et al. Noninvasive monitoring of blood glucose with Raman Spectroscopy[J]. Accounts of Chemical Research, 2017, 50(2): 264-272.
[9] [9] Kang J W, Park Y S, Chang H, et al. Direct observation of glucose fingerprint using in vivo Raman spectroscopy[J]. Science Advances, 2020, 6(4): eaay5206.
[10] [10] Hanna K, Krzoska E, Shaaban A M, et al. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects[J]. British Journal of Cancer, 2022, 126(8): 1125-1139.
[11] [11] Hara R, Ishigaki M, Kitahama Y, et al. Use of the product of mean intensity ratio (PMIR) technique for discriminant analysis of lycopene-rich vegetable juice using a portable NIR-excited Raman spectrometer[J]. Food Chemistry, 2018, 241: 353-357.
[12] [12] Mikac L, Kova ?evi ? E, Uki ? ?, et al. Detection of multi-class pesticide residues with surface-enhanced Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 252: 119478.
[13] [13] Dong R, Li S, Lin D, et al. Progress of the applications of surface-enhanced Raman spectroscopy in illicit drug detection[J]. Scientia Sinica Chimica, 2020, 51(3): 294-309.
[14] [14] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.
[15] [15] Smith E, Dent G. Modern Raman spectroscopy: a practical approach[M]. 2nd ed. Hoboken, NJ: Wiley, 2019.
[16] [16] Steel W H. Luminosity, Throughput, or Etendue[J]. Applied optics, 1974, 13(4): 704-705.
[17] [17] Yang W, Knorr F, Popp J, et al. Development and evaluation of a hand-held fiber-optic Raman probe with an integrated autofocus unit[J]. Optics express, 2020, 28(21): 30760-30770.
[18] [18] Mahajan S, Lee T C, Biedermann F, et al. Raman and SERS spectroscopy of cucurbit[n]urils[J]. Physical Chemistry Chemical Physics, 2010, 12(35): 10429-10433.
[20] [20] Ilchenko O, Pilhun Y, Kutsyk A, et al. Optics miniaturization strategy for demanding Raman spectroscopy applications[J]. Nature Communications, 2024,15(1): 3049.
[22] [22] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 2021,371: eabe0722.
[23] [23] Li A, Yao C, Xia J, et al. Advances in cost-effective integrated spectrometers[J]. Light: Science & Applications, 2022, 11(1): 174.
[25] [25] Angel S M, Gomer N R, Sharma S K, et al. Remote Ramanspectroscopy for planetary exploration: A Review[J]. Applied Spectroscopy, 2012, 66(2): 137-150.
[26] [26] Wei J, Wang A, Lambert J, et al. Autonomous soil analysis by the Mars Micro-beam Raman Spectrometer (MMRS) on-board a rover in the Atacama Desert: a terrestrial test for planetary exploration[J]. Journal of Raman Spectroscopy, 2015,46(10): 810-821.
[27] [27] Sakurai T, Ohno H, Motoyama H, et al. Micro-droplets containing sulfate in the Dome Fuji deep ice core, Antarctica: findings using micro-Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2017,48 (3): 448-452.
[28] [28] Subramanian A, Ryckeboer E, Dhakal A, et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited][J]. Photonics Research, 2015, 3(5): B47.
[29] [29] Ryckeboer E, Bockstaele R, Vanslembrouck M, et al. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip[J]. Biomedical Optics Express,5(5): 1636-1648.
[30] [30] Cheben P, Schmid J H, Delage A, et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides[J]. Optics Express,2007, 15(5): 2299-2306.
[31] [31] Nguyen V D, Akca B I, W?rhoff K, et al. Spectral domain optical coherence tomography imaging with an integrated optics spectrometer[J]. Optics Letters, 2011, 36: 1293-1295.
[32] [32] Muneeb M, Chen X R, Verheyen P, et al. Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 38μm[J]. Optics Express, 2013, 21(10): 11659-11669.
[33] [33] Vasiliev A, Muneeb M, Allaert J, et al. Integrated silicon-on-insulator spectrometer with single pixel readout for Mid-Infrared spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics,2018, 24(6): 1-7.
[34] [34] Zou J, Sun F, Wang C, et al. Silicon-based arrayed waveguide gratings for WDM and spectroscopic analysis applications[J]. Optics and Laser Technology, 2022, 147(6): 107656.
[35] [35] Zhang Z, Wang Y, Wang J, et al. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating[J]. Photonics Research, 2022, 10(5): A74-A81.
[36] [36] Pathak S, Dumon P, Van T D, et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator[J]. IEEE Photonics Journal, 2014, 6(5): 1-9.
[37] [37] Xiao M, Li M, He J, et al. CMOS-Compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics Journal, 2013, 5(2): 6600807.
[38] [38] Velasco A V, Cheben P, Bock P J, et al. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides[J]. Optics Letters, 2013, 38(5): 706-708.
[39] [39] Nedeljkovic M, Velasco A V, Khokhar A Z, et al. Mid-Infrared silicon-on-insulator Fourier-Transform spectrometer chip[J]. IEEE Photonics Technology Letters, 2016, 28(4): 528-531.
[40] [40] Podmore H, Scott A, Pavel Cheben, et al. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer[J]. Optics Letters, 2017, 42(7): 1440-1443.
[41] [41] Herrero-Bermello A, Velasco A V, Podmore H, et al. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers[J]. Optics Letters, 2017, 42(11): 2239-2242.
[42] [42] Podmore H, Scott A, Cheben P, et al. Athermal planar-waveguide Fourier-transform spectrometer for methane detection[J]. Optics Express, 2017, 25(26): 33018-33028.
[43] [43] Jacquinot P. The luminosity of spectrometers with prisms, gratings, or fabry-perot etalons[J]. Journal of the Optical Society of America, 1954, 44(10): 761.
[44] [44] Fellgett P B. The theory of infra-red sensitivities and its application to investigations of stellar radiation in the near infra-red[D]. PhD Thesis, University of Cambridge, 1951.
[46] [46] Roesler F L, Harlander J M. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning[J]. Proceedings of SPIE, 1990, 1318: 234-243.
[47] [47] Gomer N R, Gordon C M, Lucey P, et al. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept[J]. Applied Spectroscopy, 2011, 65(8): 849-857.
[48] [48] Liu J, Bayanheshig, Qi X, et al. Backscattering Raman spectroscopy using multi-grating spatial heterodyne Raman spectrometer[J]. Applied Optics, 2018, 57(33): 9735-9735.
[49] [49] Egan M J, Acosta-Maeda T E, Angel S M, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1794-1801.
[50] [50] Qiu J, Qi X, Li X, et al. Raman measurements using a field-widened spatial heterodyne Raman spectrometer[J]. Journal of Raman Spectroscopy, 2019, 50(10): 1602-1613.
[51] [51] Harlander J M. Spatial heterodyne spectroscopy: Interferometric performance at any wavelength without scanning[D]. The University of Wisconsin - Madison. 1991.
[52] [52] Qiu J, Qi X, Li X, et al. Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure[J]. Optics Express, 2018, 26(20): 26106-26106.
[53] [53] Barnett P D, Angel S M. Miniaturespatial heterodyne Raman spectrometer with a cell phone camera detector[J]. Applied Spectroscopy, 2016, 71(5): 988-995.
[54] [54] Dorpe P V, Claes T, Chen C, et al. High optical throughput, high spectral resolution, on-chip Raman spectrometer[C]. 26th International conference on Raman spectroscopy, Jeju Korea, 2018.
[55] [55] Wang H, Lin Z, Li Q, et al. On-chip Fourier transform spectrometers by dual-polarized detection[J]. Optics Letters, 2019, 44(11): 2923-2926.
[56] [56] González-Andrade D, Thuy T, Guerber S, et al. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input[J]. Optics Letters, 2021, 46(16): 4021-4024.
[57] [57] Zhang H, Wang X, Soos J, et al. Design of a miniature solid-state NIR spectrometer[J]. Proceedings of SPIE, 1995,2475: 376-383.
[58] [58] Gat N. Imaging spectroscopy using tunable filters: A review[J]. Proceedings of SPIE, 2000, 4056: 50-64.
[59] [59] Mallinson S R, Jerman J H. Miniature micromachined Fabry-Perot interferometers in silicon[J]. Electronics Letters,1987, 23: 104-1043.
[60] [60] Kim U J, Lee S, Kim H, et al. Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer[J]. Nature Communications, 2023, 14(1): 5262.
[61] [61] Park Y, Kim U J, Lee S, et al. On-chip Raman spectrometers using narrow band filter array combined with CMOS image sensors[J]. Sensors and Actuators B: Chemical, 2023, 381: 133442.
[62] [62] Cen Q Q, Pian S J, Liu X H, et al. Microtaper leaky-mode spectrometer with picometer resolution[J]. eLight, 2023, 3(1): 9.
[63] [63] Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Optics Express, 2014, 22(18): 21541.
[64] [64] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9): 956-962.
[65] [65] Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Scientific Reports,2017,7(1): 43454.
[66] [66] Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nature Communications, 2018, 9(1): 4196.
[67] [67] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nature Photonics, 2013, 7(9): 746-751.
[68] [68] Gatkine P, Veilleux S, Hu Y, et al. Arrayed waveguide grating spectrometers for astronomical applications: new results[J]. Optics Express, 2017, 25(15): 17918-17935.
[69] [69] Calafiore G, Koshelev A, Dhuey S, et al. Holographic planar lightwave circuit for on-chip spectroscopy[J]. Light-Science & Applications, 2014, 3(9): e203.
[70] [70] Chen C, Gu H, Liu S. Ultra-simplified diffraction-based computational spectrometer[J]. Light Science & Applications, 2024,13(1): 9.
Get Citation
Copy Citation Text
XUE Xingmei, ZHANG Lili, LUO Xiao, ZHOU Lin, ZHANG Xianbiao, CHEN Chang. Raman spectrometer and its miniaturization[J]. The Journal of Light Scattering, 2024, 36(3): 290
Category:
Received: May. 9, 2024
Accepted: Nov. 21, 2024
Published Online: Nov. 21, 2024
The Author Email: Chang CHEN (chang.chen@shsmu.edu.cn)