Acta Physica Sinica, Volume. 68, Issue 23, 234701-1(2019)

Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows

Jia-Yi Hu1, Wen-Huan Zhang1、*, Zhen-Hua Chai2, Bao-Chang Shi2, and Yi-Hang Wang1
Author Affiliations
  • 1School of Mathematics and Statistics, Ningbo University, Zhejiang 315211, China
  • 2School of Mathematics and Statistics, Huazhong University of Science and Technology, Hubei 430074, China
  • show less
    Figures & Tables(13)
    The schematic of three-dimensional Poiseuille flow.三维泊肃叶流示意图
    Comparison between numerical and analytical solutions of Poiseuille flow: (a) The variation of with y for different locations of z at section for Poiseuille flow; (b) the variation of pressure with x for different locations of y at section for Poiseuille flow. Lines, analytical solutions; symbols, numerical results; the relaxation parameter .泊肃叶流数值解与解析解的对比 (a) 泊肃叶流在截面处z取不同的值时水平速度随y变化的函数图像; (b) 在截面处y取不同的值时压力p随x变化的函数图像; 直线: 解析解; 符号: 数值解; 松弛因子
    The variation of of velocity field with the lattice spacing at different for Poiseuille flow. Symbols represent numerical solutions, lines represent fitting line.不同的下, 模拟泊肃叶流得到的速度场的全局相对误差随空间步长的变化, 符号代表数值解, 连线表示拟合直线
    The variation of horizontal velocity ux with y for pulsatile flow at the location , , . Line, analytical solutions; symbols, numerical solutions.在时脉动流在, 处水平速度ux随y变化的函数. 直线: 解析解; 符号: 数值解
    The variation of with the lattice spacing at four different times in a period for pulsatile flow.同一周期四个不同时刻下变量随空间步长的变化
    The schematic of three-dimensional lid-driven cavity flow三维顶盖驱动的方腔流示意图
    The velocity distribution in the vertical and horizontal center lines at section for cavity flows at different : (a) ; (b) ; (c) .不同的雷诺数下模拟方腔流, 在截面处竖直和水平中心线的速度分布 (a) Re = 100; (b) ; (c)
    • Table 1. The of velocity field for Poiseuille flow computed by iD3Q12 MRT and D3Q13 MRT models under different relaxation parameters and different lattice spacings. iD3Q12 MRT和D3Q13 MRT模型在不同松弛因子 和不同空间步长下计算得到的泊肃叶流的速度场的全局相对误差

      View table
      View in Article

      Table 1. The of velocity field for Poiseuille flow computed by iD3Q12 MRT and D3Q13 MRT models under different relaxation parameters and different lattice spacings. iD3Q12 MRT和D3Q13 MRT模型在不同松弛因子 和不同空间步长下计算得到的泊肃叶流的速度场的全局相对误差

      ${\rm GRE}_u$Lattice spacing $\text{δ} x$Model
      1/81/161/321/64
      ${\lambda}_{\nu}=0.8,$${\lambda}'_{\nu}=1.143$$3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$iD3Q12 MRT
      $3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$D3Q13 MRT
      ${\lambda}_{\nu}=1.0,$${\lambda}'_{\nu}=1.333$$5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$iD3Q12 MRT
      $5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$D3Q13 MRT
      ${\lambda}_{\nu}=1.3,$${\lambda}'_{\nu}=1.576$$8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$iD3Q12 MRT
      $8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$D3Q13 MRT
    • Table 2. The global relative errors of the velocity field at different times for pulsatile flow simulated by iD3Q12 MRT and D3Q13 MRT models at different lattice spacings, . 在 时, 不同空间步长下用iD3Q12 MRT模型和D3Q13 MRT模型模拟脉动流所得的不同时刻下的速度场的全局相对误差

      View table
      View in Article

      Table 2. The global relative errors of the velocity field at different times for pulsatile flow simulated by iD3Q12 MRT and D3Q13 MRT models at different lattice spacings, . 在 时, 不同空间步长下用iD3Q12 MRT模型和D3Q13 MRT模型模拟脉动流所得的不同时刻下的速度场的全局相对误差

      Lattice spacing${\rm GRE}_u$Model
      $T/4$$T/2$$3 T/4$T
      ${\rm{\text{δ}} } x= {1}/{20}$$1.483\times10^{-2}$$4.214\times10^{-2}$$1.805\times10^{-2}$$4.028\times10^{-2}$iD3Q12 MRT
      $1.662\times10^{-2}$$4.733\times10^{-2}$$2.118\times10^{-2}$$4.299\times10^{-2}$D3Q13 MRT
      ${\rm{\text{δ}} } x= {1}/{40}$$3.803\times10^{-3}$$1.199\times10^{-2}$$4.651\times10^{-3}$$1.153\times10^{-2}$iD3Q12 MRT
      $4.172\times10^{-3}$$1.324\times10^{-2}$$5.398\times10^{-3}$$1.217\times10^{-2}$D3Q13 MRT
      ${\rm{\text{δ}} } x= {1}/{60}$$1.702\times10^{-3}$$5.569\times10^{-3}$$2.085\times10^{-3}$$5.369\times10^{-3}$iD3Q12 MRT
      $1.855\times10^{-3}$$6.116\times10^{-3}$$2.412\times10^{-3}$$5.648\times10^{-3}$D3Q13 MRT
      ${\rm{\text{δ}} } x= {1}/{80}$$9.605\times10^{-4}$$3.204\times10^{-3}$$1.177\times10^{-3}$$3.092\times10^{-3}$iD3Q12 MRT
      $1.043\times10^{-3}$$3.509\times10^{-3}$$1.360\times10^{-3}$$3.247\times10^{-3}$D3Q13 MRT
    • Table 3.

      The orders of the spatial accuracy of iD3Q12 MRT and D3Q13 MRT models under adjacent spacings.

      相邻空间步长下的iD3Q12 MRT和D3Q13 MRT模型的空间精度的阶

      View table
      View in Article

      Table 3.

      The orders of the spatial accuracy of iD3Q12 MRT and D3Q13 MRT models under adjacent spacings.

      相邻空间步长下的iD3Q12 MRT和D3Q13 MRT模型的空间精度的阶

      Adjacent spacingOrderModel
      $T/4$$T/2$$3 T/4$T
      Average1.9781.8751.9741.869iD3Q12 MRT
      1.9981.8911.9841.879D3Q13 MRT
      ${1}/{20} \to {1}/{40}$1.9631.8131.9561.805iD3Q12 MRT
      1.9941.8381.9721.821D3Q13 MRT
      ${1}/{40}\to {1}/{60}$1.9831.8911.9791.885iD3Q12 MRT
      1.9991.9051.9871.893D3Q13 MRT
      ${1}/{60} \to {1}/{80}$1.9891.9221.9881.918iD3Q12 MRT
      2.0011.9311.9921.924D3Q13 MRT
    • Table 4. The global relative error calculated by the velocity field at time T of pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different lattice spacings. The maximal pressure drop of the channel increases, , are fixed. The blank indicates that the computation is divergent. 在 , , 最大压差 增大时不同的空间步长下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流在时刻T下的速度场所计算的全局相对误差 , 空白处表示计算发散

      View table
      View in Article

      Table 4. The global relative error calculated by the velocity field at time T of pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different lattice spacings. The maximal pressure drop of the channel increases, , are fixed. The blank indicates that the computation is divergent. 在 , , 最大压差 增大时不同的空间步长下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流在时刻T下的速度场所计算的全局相对误差 , 空白处表示计算发散

      $ \Delta p $Lattice spacing ${\rm{\text{δ}} } x$Model
      1/201/401/601/80
      $0.005 $$9.919\times10^{-2}$$3.030\times10^{-2}$$1.442\times10^{-2}$$8.402\times10^{-3}$iD3Q12 MRT
      $1.121\times10^{-1}$$3.326\times10^{-2}$$1.568\times10^{-2}$$9.084\times10^{-3}$D3Q13 MRT
      $0.010$$1.172\times10^{-1}$$3.445\times10^{-2}$$1.618\times10^{-2}$$9.362\times10^{-3}$iD3Q12 MRT
      $1.679\times10^{-1}$$4.763\times10^{-2}$$2.199\times10^{-2}$$1.260\times10^{-2}$D3Q13 MRT
      $0.020$$1.777\times10^{-1}$$5.110\times10^{-2}$$2.365\times10^{-2}$$1.355\times10^{-2}$iD3Q12 MRT
      $2.940\times10^{-1}$$8.630\times10^{-2}$$3.987\times10^{-2}$$2.279\times10^{-2}$D3Q13 MRT
      $0.050$$1.243\times10^{-1}$$5.848\times10^{-2}$$3.386\times10^{-2}$iD3Q12 MRT
      $2.025\times10^{-1}$$9.868\times10^{-2}$$5.757\times10^{-2}$D3Q13 MRT
      $0.080$$6.073\times10^{-2}$iD3Q12 MRT
      $1.575\times10^{-2}$$9.405\times10^{-2}$D3Q13 MRT
      $0.100$iD3Q12 MRT
      $1.192\times10^{-1}$D3Q13 MRT
      $0.120$iD3Q12 MRT
      $1.454\times10^{-1}$D3Q13 MRT
    • Table 5. The global relative error of the velocity field at time T of the pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different relaxation time τ. The maximal pressure drop of the channel is increased and is fixed. The blank indicates that the computation is divergent. 在 时, 最大压差 增大时不同的松弛时间τ下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流由T时刻的速度场计算得出的全局相对误差 , 空白处表示计算发散

      View table
      View in Article

      Table 5. The global relative error of the velocity field at time T of the pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different relaxation time τ. The maximal pressure drop of the channel is increased and is fixed. The blank indicates that the computation is divergent. 在 时, 最大压差 增大时不同的松弛时间τ下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流由T时刻的速度场计算得出的全局相对误差 , 空白处表示计算发散

      $\Delta p$τModel
      0.550.600.700.90
      $0.005 $$1.302\times10^{-1}$$6.311\times10^{-2}$$2.955\times10^{-2}$$1.744\times10^{-2}$iD3Q12 MRT
      $1.556\times10^{-1}$$6.560\times10^{-3}$$3.023\times10^{-2}$$1.993\times10^{-2}$D3Q13 MRT
      $0.010$$1.612\times10^{-1}$$6.830\times10^{-2}$$2.711\times10^{-2}$$1.736\times10^{-2}$iD3Q12 MRT
      $2.435\times10^{-1}$$8.735\times10^{-2}$$2.661\times10^{-2}$$2.058\times10^{-2}$D3Q13 MRT
      $0.020$$2.475\times10^{-1}$$9.926\times10^{-2}$$2.624\times10^{-2}$$1.656\times10^{-2}$iD3Q12 MRT
      $4.182\times10^{-1}$$1.542\times10^{-1}$$2.757\times10^{-2}$$2.195\times10^{-2}$D3Q13 MRT
      $0.030$$1.430\times10^{-1}$$3.421\times10^{-2}$$1.509\times10^{-2}$iD3Q12 MRT
      $5.482\times10^{-1}$$2.193\times10^{-1}$$3.616\times10^{-2}$$2.343\times10^{-2}$D3Q13 MRT
      $0.040$$5.001\times10^{-2}$$1.349\times10^{-2}$iD3Q12 MRT
      $4.693\times10^{-2}$$2.502\times10^{-2}$D3Q13 MRT
      $0.050$$1.291\times10^{-2}$iD3Q12 MRT
      $2.674\times10^{-2}$D3Q13 MRT
    • Table 6. Comparing the stability of iD3Q12 MRT and He-Luo D3Q13 MRT models for three-dimensional cavity flows when the Reynolds number is continuously increased. The tick represents convergence, the convergence criterion is formula (39). 不断增大雷诺数比较iD3Q12 MRT和He-Luo D3Q13 MRT模型在模拟方腔流时的稳定性. 代表收敛, 收敛准则是(39)式

      View table
      View in Article

      Table 6. Comparing the stability of iD3Q12 MRT and He-Luo D3Q13 MRT models for three-dimensional cavity flows when the Reynolds number is continuously increased. The tick represents convergence, the convergence criterion is formula (39). 不断增大雷诺数比较iD3Q12 MRT和He-Luo D3Q13 MRT模型在模拟方腔流时的稳定性. 代表收敛, 收敛准则是(39)式

      ReModel
      iD3Q12 MRTHe-Luo D3Q13 MRT
      100$\checkmark$$\checkmark$
      400$\checkmark$$\checkmark$
      1000$\checkmark$$\checkmark$
      1500$\checkmark$$\checkmark$
      1600$\checkmark$$\checkmark$
      1700divergent$\checkmark$
      1800divergentdivergent
    Tools

    Get Citation

    Copy Citation Text

    Jia-Yi Hu, Wen-Huan Zhang, Zhen-Hua Chai, Bao-Chang Shi, Yi-Hang Wang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows[J]. Acta Physica Sinica, 2019, 68(23): 234701-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 26, 2019

    Accepted: --

    Published Online: Sep. 17, 2020

    The Author Email:

    DOI:10.7498/aps.68.20190984

    Topics