Laser & Optoelectronics Progress, Volume. 55, Issue 9, 90001(2018)
Progress in Injection-Seeded All-Solid-State Single-Frequency Pulse Laser
[1] [1] Yao B Q, Liu X L, Yu L X, et al. Resonantly pumped single frequency Er∶YAG laser at 1645 nm[J]. Laser Physics, 2011, 22(2): 403-405.
[2] [2] Merriam A J, Yin G Y. Efficient self-seeding of a pulsed Ti3+∶Al2O3 laser[J]. Optics Letters, 1998, 23(13): 1034-1036.
[3] [3] Chen Y F, Huang T M, Wang C L, et al. Theoretical and experimental studies of single-mode operation in diode pumped Nd∶YVO4/KTP green laser: influence of KTP length[J]. Optics Communications, 1998, 152(4/5/6): 319-323.
[4] [4] Zhou F, Ferguson A I. Tunable single frequency operation of a diode laser pumped Nd∶YAG microchip at 1.3 μm[J]. Electronics Letters, 1990, 26(7): 490-491.
[5] [5] Zayhowski J J, Mooradian A. Single-frequency microchip Nd lasers[J]. Optics Letters, 1989, 14(1): 24-26.
[6] [6] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd∶YAG ring laser[J]. Optics Letters, 1985, 10(2): 65-67.
[7] [7] Evtuhov V, Siegman A E. A "twisted-mode" technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 1965, 4(1): 142-143.
[8] [8] Yang H L, Meng J Q, Ma X H, et al. Compact and high-energy diode-side-pumped Q-switched Nd∶YAG slab laser system for space application[J]. Chinese Optics Letters, 2014, 12(12): 121406.
[9] [9] Razenkov I A. Aerosol lidar for continuous atmospheric monitoring[J]. Atmospheric and Oceanic Optics, 2013, 26(4): 308-319.
[10] [10] Zhou J, Long X W. Laser Doppler velocimeter using a single longitudinal mode solid-state laser source[J]. Optics & Laser Technology, 2010, 42(7): 1167-1171.
[11] [11] Frede M, Wilhelm R, Gau R, et al. High-power single-frequency Nd∶YAG laser for gravitational wave detection[J]. Classical & Quantum Gravity, 2004, 21(5): S895-S901.
[12] [12] Li C, Xie J J, Pan Q K, et al. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6): 615-624.
[13] [13] Li M L, Gao L, Shi W Z, et al. Progress in all-solid-state single-frequency lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080003.
[14] [14] Park Y K, Giuliani G, Byer R L. Single axial mode operation of a Q-switched Nd∶YAG oscillator by injection seeding[J]. IEEE Journal of Quantum Electronics, 1984, 20(2): 117-125.
[15] [15] Rahn L A. Feedback stabilization of an injection-seeded Nd∶YAG laser[J]. Applied Optics, 1985, 24(7): 940-942.
[16] [16] Zhou J, Yu T, Bi J Z, et al. Diode pumped injection seeded Nd∶YAG laser[J]. Chinese Optics Letters, 2006, 4(5): 292-293.
[17] [17] Schrder T, Lemmerz C, Reitebuch O, et al. Frequency jitter and spectral width of an injection-seeded Q-switched Nd∶YAG laser for a Doppler wind lidar[J]. Applied Physics B, 2007, 87(3): 437-444.
[18] [18] Henderson S W, Yuen E H, Fry E S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd∶YAG lasers[J]. Optics Letters, 1986, 11(11): 715-717.
[19] [19] Fry E S, Hu Q, Li X. Single frequency operation of an injection-seeded Nd∶YAG laser in high noise and vibration environments[J]. Applied Optics, 1991, 30(9): 1015-1017.
[20] [20] Zhou J, Zang H G, Yu T, et al. A compact diode-pumped injection seeded Nd∶YAG laser with resonance-detection technique[J]. Chinese Physics Letters, 2007, 24(4): 947-949.
[21] [21] Lu T T, Wang J T, Zhu X L, et al. Highly efficient single longitudinal mode-pulsed green laser[J]. Chinese Optics Letters, 2013, 11(5): 051402.
[22] [22] Na Q X, Gao C Q, Wang Q, et al. 1 kHz single-frequency 2.09 μm Ho∶YAG ring laser[J]. Applied Optics, 2017, 56(25): 7075-7078.
[23] [23] Fry E S, Thomas E, Larsen M P, et al. Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique[C]∥Proceedings of the Lasers and Electro-Optics, 1997: 362-363.
[24] [24] Walther T, Larsen M P, Fry E S. Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser[J]. Applied Optics, 2001, 40(18): 3046-3050.
[25] [25] Ye Q, Gao C Q, Wang S, et al. Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er∶YAG ceramic laser at 1645 nm[J]. Applied Physics B, 2016, 122(7): 198.
[26] [26] Zhang Y X, Gao C Q, Wang Q, et al. Single-frequency, injection-seeded Q-switched Ho∶YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD[J]. Optics Express, 2016, 24(24): 27805-27811.
[27] [27] Wang Q, Gao C Q, Na Q X, et al. Single-frequency injection-seeded Q-switched Ho∶YAG laser[J]. Applied Physics Express, 2017, 10(4): 042701.
[28] [28] Guyomar D, Aurelle N, Eyraud L. Piezoelectric ceramics nonlinear behavior.Application to Langevin transducer[J]. Journal de Physique III, 1997, 7(6): 1197-1208.
[29] [29] Ertel K, Linne H, Bosenberg J. Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation[J]. Applied Optics, 2005, 44(24): 5120-5126.
[30] [30] Zhou J, Yu T, Liu J Q, et al. Development of single-frequency laser for direct-detection wind lidar[J]. Proceedings of SPIE, 2007, 6681: 66810R.
[31] [31] Zhou J, Zang H G, Liu D, et al. Frequency doubled single-longitudinal-mode Nd∶YAG laser for remote sensing[C]∥24th International Laser Radar Conference, 2008: 133-136.
[32] [32] Wang J T, Zhu R, Zhou J, et al. Conductively cooled 1-kHz single-frequency Nd∶YAG laser for remote sensing[J]. Chinese Optics Letters, 2011, 9(8): 081405.
[33] [33] Gao Y F, Zhang J X, Zang H G, et al. Stable single-mode operation of injection-seeded Q-switched Nd∶YAG laser by sine voltage modulation[J]. Chinese Optics Letters, 2016, 14(7): 071401.
[34] [34] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
[35] [35] Brewer A, Randall M, Hardesty R M, et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 2000, 25(17): 1228-1230.
[36] [36] Gibert F, Edouart D, Cénac C, et al. 2-μm high-power multiple-frequency single-mode Q-switched Ho∶YLF laser for DIAL application[J]. Applied Physics B, 2014, 116(4): 967-976.
[37] [37] Lemmerz C, Lux O, Reitebuch O, et al. Frequency and timing stability of an airborne injection-seeded Nd∶YAG laser system for direct-detection wind lidar[J]. Applied Optics, 2017, 56(32): 9057-9068.
[38] [38] Nicolaescu R, Walther T, Fry E S. Linewidth narrowing of a pulsed alexandrite laser by intracavity phase modulation[C]∥Proceedings of the Lasers and Electro-Optics, 1998: 179-180.
[39] [39] Bsenberg J, Wulfmeyer V. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar[J]. Optics Letters, 1996, 21(15): 1150-1152.
[40] [40] Hovis F E. Single-frequency 355 nm source for direct detection wind lidar[J]. Proceedings of SPIE, 2005, 5653: 198-209.
[41] [41] Moore T Z, Anderson F S. Generating multiple wavelengths, simultaneously, in a Ti:sapphire ring laser with a ramp-hold-fire seeding technique[J]. Proceedings of SPIE, 2012, 8235: 82351M.
[42] [42] Zhang J X, Zhu X L, Zang H G, et al. Injection seeded single-frequency pulsed Nd∶YAG laser resonated by an intracavity phase modulator[J]. Applied Optics, 2014, 53(31): 7241-7245.
[43] [43] Zhang J X, Zhu X L, Ma X H, et al. Stable seeder-injected Nd∶YAG pulsed laser using a RbTiOPO4 phase modulator[J]. Chinese Optics Letters, 2015, 13(11): 111404.
[44] [44] Zhang J X, Zhu X L, Zang H G, et al. Double-pulse single-longitudinal-mode operation of injection-seeded laser using intracavity phase modulator[J]. Optical Engineering, 2017, 56(4): 046105.
Get Citation
Copy Citation Text
Long Jiangxiong, Li Gang, Yang Bin, Yao Hongquan, Ding Jianyong, Zhou Jun. Progress in Injection-Seeded All-Solid-State Single-Frequency Pulse Laser[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90001
Category: Reviews
Received: Feb. 2, 2018
Accepted: --
Published Online: Sep. 8, 2018
The Author Email: