Journal of Inorganic Materials, Volume. 34, Issue 1, 60(2019)
Synthesis of Novel MAX Phase Ti3ZnC2via A-site-element-substitution Approach
[1] BARSOUM M W. The MN+1AXN, phases: a new class of solids: thermodynamically stable nanolaminates[D]. Progress in Solid State Chemistry, 28, 201-281(2000).
[2] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[D]. Journal of the American Ceramic Society, 79, 1953-1956(1996).
[3] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[D]. International Materials Reviews, 56, 143-166(2011).
[4] ARYAL S, CHING W Y, MO Y et al. Intrinsic mechanical properties of 20 MAX-phase compounds[D]. Journal of the American Ceramic Society, 96, 2292-2297(2013).
[5] AMINI S, FINKEL P, SCABAROZI T H et al. 104(3): 033502-1-5[D]. elastic properties of the MAX-phase Ti2SC. Journal of Applied Physics(2008).
[6] GANGULY A, HETTINGER J D, SCABAROZI T et al[D]. Electronic and thermal properties of Ti3Al(C0. 5, N0.5)2, Ti2Al(C0. 5, N0. 5), and Ti2AlN. Journal of Applied Physics, 104(7): 073713-1-6..
[7] . Physical Review B, elastic properties of M2AlC, FINKEL P, HETTINGER J D, LOFLAND S E, M = Ti, thermal transport et al. 72(11): 115120-1-6[D]. V(2005).
[8] CHEN K, LIU G, ZHOU H et al[D]. Layered growth of Ti2AlC and.
[9] ALI M, BARSOUM M W, EL-RAGHY T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0. 5N0. 5[D]. Metallurgical and Materials Transactions A, 31, 1857-1865(2000).
[10] DAHLQVIST M, FASHANDI H, LU J et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC[D]. Nature materials, 16, 814-818(2017).
[11] DAHLQVIST M, FASHANDI H, LAI C C et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2[D]. Chemical Communications, 53, 9554-9557(2017).
[12] LU C, WANG G, YANG G et al. Substitution behavior of Ag atoms in the Ti2AlC ceramic[D]. Journal of the American Ceramic Society, 100, 732-738(2017).
[13] CLARK S J, PICKARD C J, SEGALL M D et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-[D]. Crystalline Materials, 220, 567-570(2005).
[14] SEGALL M D. LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[D]. Journal of Physics: Condensed Matter, 14, 2717(2002).
[15] FRANK W. ELSÄSSER C, FÄHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals[D]. Physical Review Letters, 74, 1791-1794(1995).
[16] KAWAZOE Y, LI Z Q, PARLINSKI K. First-principles determination of the soft mode in cubic ZrO2[D]. Physical Review Letters, 78, 4063-4066(1997).
[17] BORN M. On the stability of crystal lattices. I[C]. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172(1940).
Get Citation
Copy Citation Text
Mian LI, You-Bing LI, Kan LUO, Jun LU, Per EKLUND, Per PERSSON, Johanna ROSEN, Lars HULTMAN, Shi-Yu DU, Zheng-Ren HUANG, Qing HUANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Synthesis of Novel MAX Phase Ti3ZnC2via A-site-element-substitution Approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60
Category: Research Articles
Received: Aug. 21, 2018
Accepted: --
Published Online: Feb. 4, 2021
The Author Email: