Chinese Journal of Lasers, Volume. 39, Issue 12, 1203003(2012)
Classification and Elimination of Ablation Debris on the Mitigated Damage Site in Fused Silica Surface
[1] [1] A. Salleo, F. Y. Genin, J. M. Yoshiyama et al.. Laser-induced damage of fused silica at 355 nm initiated at scratches[C]. SPIE, 1998, 3244: 341~347
[2] [2] Wang Libin, Ma Weixin, Ji Lailin et al.. Influence of metal particles on damage threshold of fused silica at 3ω[J]. Chinese J. Lasers, 2012, 39(5): 0502004
[3] [3] M. A. Norton, E. E. Donohue, M. D. Feit et al.. Growth of laser damage on the input surface of SiO2 at 351 nm[C]. SPIE, 2007, 6403: 64030L
[4] [4] J. A. Menapace, P. J. Davis, W. A. Steele et al.. MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[C]. SPIE, 2005, 5991: 39~49
[5] [5] J. Menapace, B. Penetrante, P. Miller et al.. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics[C]. SPIE, 2002, 4679: 56~68
[6] [6] R. R. Prasad, J. R. Bruere, J. Halpin et al.. Design of a production process to enhance optical performance of 3ω optics[C]. SPIE, 2004, 5273: 296~302
[7] [7] Yang Minghong, Zhao Yuan′an, Yi Kui et al.. Subsurface damage characterization of ground fused silica by HF etching combined with polishing layer by layer[J]. Chinese J. Lasers, 2012, 39(3): 303007
[8] [8] S. Palmier, L. Gallais, M. Commandré et al.. Optimization of a laser mitigation process in damaged fused silica[J]. Applied Surface Science, 2009, 255(10): 5532~5536
[10] [10] I. L. Bass, G. M. Guss, M. J. Nostrand et al.. An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser[C]. SPIE, 2010, 7842: 784220
[11] [11] J. J. Adams, J. D. Bude, M. Bolourchi et al.. Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica[C]. SPIE, 2010, 7842: 784223
[12] [12] P. Cormont, L. Gallais, L. Lamaignère et al.. Effect of CO2 laser annealing on residual stress and on laser damage resistance for fused silica optics[C]. SPIE, 2010, 7842: 78422C
[13] [13] Y. Jiang, X. Xiang, C. M. Liu et al.. Two localized CO2 laser treatment methods for mitigation of UV damage growth in fused silica[J]. Chin. Phys. B, 2012, 21(6): 064219
[14] [14] E. Mendez, H. J. Baker, K. M. Nowak et al.. Highly localised CO2 laser cleaning and damage repair of silica optical surfaces[C]. SPIE, 2005, 5647: 165~176
[15] [15] E. Mendez, K. M. Nowak, H. J. Baker et al.. Localized CO2 laser damage repair of fused silica optics[J]. Appl. Opt., 2006, 45(21): 5358~5367
[16] [16] M. D. Feit, A. M. Rubenchik. Mechanisms of CO2 laser mitigation of laser damage growth in fused silica[C]. SPIE, 2003, 4932: 91~102
[17] [17] M. J. Matthews, I. L. Bass, G. M. Guss et al.. Downstream intensification effects associated with CO2 laser mitigation of fused silica[C]. SPIE, 2007, 6720: 67200A
[18] [18] M. D. Feit, A. M. Rubenchik. Modeling of laser induced damage in NIF UV optics[R]. Lawrence Livermore National Lab., CA (US), 2001, UCRL-ID-142596
[19] [19] C. L. Battersby, L. M. Sheehan, M. R. Kozlowski. Effects of wet etch processing on laser-induced damage of fused silica surfaces[C]. SPIE, 1998, 3578: 446~455
Get Citation
Copy Citation Text
Jiang Yong, Xiang Xia, Liu Chunming, Yuan Xiaodong, Yang Liang, Yan Zhonghua, Wang Haijun, Liao Wei, Lü Haibing, Zheng Wanguo, Zu Xiaotao. Classification and Elimination of Ablation Debris on the Mitigated Damage Site in Fused Silica Surface[J]. Chinese Journal of Lasers, 2012, 39(12): 1203003
Category: laser manufacturing
Received: Jun. 15, 2012
Accepted: --
Published Online: Oct. 18, 2012
The Author Email: Yong Jiang (jyuestc25@163.com)