Journal of Quantum Optics, Volume. 30, Issue 2, 20201(2024)

Simulation Analysis of the Steering Hydrogen Maser by Strontium Optical Lattice Clock

XU Qin-fang1,2, WANG Ye-bing1,2,3、*, and CHANG Hong1,2,3
Author Affiliations
  • 1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hefei National Laboratory, Hefei 230088, China
  • show less
    References(31)

    [1] [1] DOW JOHN M, NEILAN R E, RIZOS C. The international GNSS service in a changing landscape of global navigation satellite systems[J]. Journal of Geodesy, 2009, 83(3/4):191‒198. DOI: 10.1007/s00190-008-0300-3.

    [2] [2] GODUN R M, NISBET-JONES P B R, JONES J M, et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants[J]. Physical Review Letters, 2014, 113(21):210801. DOI: 10.1103/PhysRevLett.113.210801.

    [3] [3] ROBERTS B M, BLEWITT G, DAILEY C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites[J]. Nature Communications, 2017, 8(1):1195. DOI: 10.1038/s41467-017-01440-4.

    [4] [4] TAKANO T, TAKAMOTO M, USHIJIMA I, et al. Geopotential measurements with synchronously linked optical lattice clocks[J]. Nature Photonics, 2016, 10(10):662‒666. DOI: 10.1038/nphoton.2016.159.

    [5] [5] PANFILO G, ARIAS F. The coordinated universal time (UTC)[J]. Metrologia, 2019, 56:042001. DOI: 10.1088/1681-7575/ab1e68.

    [6] [6] ANFILO G, HARMEGNIES A, TISSERAND L. A new prediction algorithm for the generation of International Atomic Time[J]. Metrologia, 2012, 49(1):49‒56. DOI: 10.1088/0026-1394/49/1/008.

    [7] [7] YAO J, PARKER T E, ASHBY N, et al. Incorporating an optical clock into a time scale[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, 65(1):127‒134. DOI: 10.1109/TUFFC.2017.2773530.

    [8] [8] ROVERA G D, BIZE S, CHUPIN B, et al. UTC(OP) based on LNE-SYRTE atomic fountain primary frequency standards[J]. Metrologia, 2016, 53:S81‒S88. DOI: 10.1088/0026-1394/53/3/S81.

    [9] [9] YAO J, SHERMAN J A, FORTIER T, et al. Optical-clock-based time scale[J]. Physical Review Applied, 2019, 12:044069. DOI: 10.1103/PhysRevApplied.12.044069.

    [10] [10] LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2):637‒701. DOI: 10.1103/RevModPhys.87.637.

    [11] [11] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3):033201. DOI: 10.1103/PhysRevLett.123.033201.

    [12] [12] HUNTEMANN N, SANNER C, LIPPHARDT B, et al. Single-ion atomic clock with 3×10−18 systematic uncertainty[J]. Physical Review Letters, 2016, 116(6):063001. DOI: 10.1103/PhysRevLett.116.063001.

    [13] [13] MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimeter level[J]. Nature, 2018, 564(7734):87‒90. DOI: 10.1038/s41586-018-0738-2.

    [14] [14] BOTHWELL T, KEDAR D, OELKER E, et al. JILA SrI optical lattice clock with uncertainty of 2.0×10−18[J]. Metrologia, 2019, 56(6):065004. DOI: 10.1088/1681-7575/ab4089.

    [15] [15] BOTHWELL T, KENNEDY C J, AEPPLI A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2021, 602(7897):420‒424. DOI: 10.1038/s41586-021-04349-7.

    [16] [16] WEYERS S, HBNER U, SCHRDER R, et al. Uncertainty evaluation of the atomic caesium fountain CSF1 of the PTB[J]. Metrologia, 2001, 38(4):343‒352. DOI: 10.1088/0026-1394/38/4/7.

    [17] [17] JEFFERTS S R, SHIRLEY J, PARKER T E, et al. Accuracy evaluation of NIST-F1[J]. Metrologia, 2002, 39(4):321‒336. DOI: 10.1088/0026-1394/39/4/1.

    [18] [18] LODEWYCK J, BILICKI S, BOOKJANS E, et al. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock[J]. Metrologia, 2016, 53(4):1123‒1130. DOI: 10.1088/0026-1394/53/4/1123.

    [19] [19] GREBING C, AL-MASOUDI A, DRSCHER S, et al. Realization of a timescale with an accurate optical lattice clock[J]. Optica, 2016, 3(6):563‒569. DOI: 10.1364/OPTICA.3.000563.

    [20] [20] IDO T, HACHISU H, NAKAGAWA F, et al. Rapid evaluation of time scale using an optical clock[J]. Journal of Physics: Conference Series, 2016, 723:012041. DOI: 10.1088/1742-6596/723/1/012041.

    [21] [21] HACHISU H, NAKAGAWA F, HANADO Y, et al. Months-long real-time generation of a time scale based on an optical clock[J]. Scientific Reports, 2018, 8(1):4243. DOI: 10.1038/s41598-018-22423-5.

    [22] [22] YAO J, SHERMAN J, FORTIER T, et al. Progress on optical-clock-based time scale at NIST: Simulations and preliminary real-data analysis[J]. Navigation, 2018, 65(4):601‒608. DOI: 10.1002/navi.248.

    [23] [23] MILNER W R, ROBINSON J M, COLIN J K, et al. Demonstration of a timescale based on a stable optical carrier[J]. Physical Review Letters, 2019, 123(17):173201. DOI: 10.1103/PhysRevLett.123.173201.

    [24] [24] FORMICHELLA V, GALLEANI L, SIGNORILE G, et al. Robustness tests for an optical time scale[J]. Metrologia, 2022, 59(1):015002. DOI: 10.1088/1681-7575/ac3801.

    [25] [25] ZHU L, LIN Y G, WANG Y Z, et al. Preliminary study of generating a local time scale with NIM 87Sr optical lattice clock[J]. Metrologia, 2022, 59(5):055007. DOI: 10.1088/1681-7575/acb05c.

    [26] [26] WANG Y B, YIN M J, REN J, et al. Strontium optical lattice clock at the National Time Service Center[J]. Chinese Physics B, 2018, 27:023701. DOI: 10.1088/1674-1056/27/2/023701.

    [27] [27] XU Q F, LU X T, XIA J J, et al. Measuring the probe Stark shift by frequency modulation spectroscopy in an 87Sr optical lattice clock[J]. Applied Physics Letters, 2021, 119:101105. DOI: 10.1063/5.0060277.

    [28] [28] LU X T, ZHOU C H, LI T, et al. Determining the atom number from detection noise in a one-dimensional optical lattice clock[J]. Applied Physics Letters, 2020, 117:231101. DOI: 10.1063/5.0085166.

    [29] [29] LU X T, GUO F, WANG Y B, et al. Absolute frequency measurement of the 87Sr optical lattice clock at NTSC using international atomic time[J]. Metrologia, 2023, 60:015008. DOI: 10.1088/1681-7575/acb05c.

    [31] [31] GELB A. Applied Optimal Estimation[M]. Cambridge, MA, USA: MIT Press. 1974:107‒113.

    [33] [33] HUTSELL STEVEN T. Relating the Hadamard variance to MCS Kalman filter clock estimation[C]//Proceedings of the 27th Annual Precise Time and Time Interval and Applications Meeting, San Diego, California, USA, 29 November-1 December 1995.

    Tools

    Get Citation

    Copy Citation Text

    XU Qin-fang, WANG Ye-bing, CHANG Hong. Simulation Analysis of the Steering Hydrogen Maser by Strontium Optical Lattice Clock[J]. Journal of Quantum Optics, 2024, 30(2): 20201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2023

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: WANG Ye-bing (wangyebing@ntsc.ac.cn)

    DOI:10.3788/jqo20243002.0201

    Topics