Opto-Electronic Engineering, Volume. 52, Issue 4, 240297(2025)
Remote-sensing images reconstruction based on adaptive dual-domain attention network
[1] Chen M H, Lu Y Q, Yang W Y et al. Super-resolution reconstruction of retinal OCT image using multi-teacher knowledge distillation network[J]. Opto-Electron Eng, 51, 240114(2024).
[2] Xiao Z J, Zhang J H, Lin B H. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electron Eng, 51, 240066(2024).
[3] Wu L S, Fang L Y, Yue J et al. Deep bilateral filtering network for point-supervised semantic segmentation in remote sensing images[J]. IEEE Trans Image Process, 31, 7419-7434(2022).
[4] Yang J Q, Du B, Xu Y H et al. Can spectral information work while extracting spatial distribution?—An online spectral information compensation network for HSI classification[J]. IEEE Trans Image Process, 32, 2360-2373(2023).
[5] Sitaula C, Kc S, Aryal J. Enhanced multi-level features for very high resolution remote sensing scene classification[J]. Neural Comput Appl, 36, 7071-7083(2024).
[6] Zhang C, Lam K M, Liu T S et al. Structured adversarial self-supervised learning for robust object detection in remote sensing images[J]. IEEE Trans Geosci Remote Sens, 62, 5613720(2024).
[7] Yu W Q, Cheng G, Wang M J et al. MAR20: a benchmark for military aircraft recognition in remote sensing images[J]. Natl Remote Sens Bull, 27, 2688-2696(2023).
[8] Zhang W X, Luo Y H, Liu Y Q et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electron Eng, 51, 230290(2024).
[9] Cheng D Q, Ma X, Kou Q Q et al. Lightweight image super-resolution reconstruction algorithm based on multi-path feature calibration[J]. J Comput-Aided Des Comput Graph, 36, 241211(2025).
[13] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 6000-6010(2017).
[19] Wang Z H, Qian Y T. Super-resolution reconstruction of spatiotemporal fusion for dual-stream remote sensing images based on Swin Transformer[J]. Comput Eng, 50, 33-45(2024).
[20] Lei S, Shi Z W, Zou Z X. Super-resolution for remote sensing images via local–global combined network[J]. IEEE Geosci Remote Sens Lett, 14, 1243-1247(2017).
[21] Jiang K, Wang Z Y, Yi P et al. Deep distillation recursive network for remote sensing imagery super-resolution[J]. Remote Sens, 10, 1700(2018).
[22] Jiang K, Wang Z Y, Yi P et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Trans Geosci Remote Sens, 57, 5799-5812(2019).
[23] Jiang K, Wang Z Y, Yi P et al. Hierarchical dense recursive network for image super-resolution[J]. Pattern Recognit, 107, 107475(2020).
[26] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C], 448-456(2015).
[27] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 38, 295-307(2016).
[31] Lei S, Shi Z W. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution[J]. IEEE Trans Geosci Remote Sens, 60, 5401410(2022).
[32] Zhang W D, Zhao W Y, Li J et al. CVANet: cascaded visual attention network for single image super-resolution[J]. Neural Netw, 170, 622-634(2024).
[33] Zhu B Y, Chen Z H, Sheng B. Remote sensing image detection based on perceptually enhanced Swin Transformer[J]. Comput Eng, 50, 216-223(2024).
[34] Zhang Y Y, Zhang B H, Zhao Y F et al. Remote sensing image classification based on dual-channel deep dense feature fusion[J]. Laser Technol, 45, 73-79(2021).
[35] Salvetti F, Mazzia V, Khaliq A et al. Multi-image super resolution of remotely sensed images using residual attention deep neural networks[J]. Remote Sens, 12, 2207(2020).
[36] Dong X Y, Sun X, Jia X P et al. Remote sensing image super-resolution using novel dense-sampling networks[J]. IEEE Trans Geosci Remote Sens, 59, 1618-1633(2021).
[37] Xiao Y, Yuan Q Q, Jiang K et al. TTST: a top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Trans Image Process, 33, 738-752(2024).
[38] Liu H X, Dai Z H, So D R et al. Pay attention to MLPs[C], 704(2021).
[39] Dauphin Y N, Fan A, Auli M et al. Language modeling with gated convolutional networks[C], 933-941(2017).
[40] Song Y D, He Z Q, Qian H et al. Vision transformers for single image Dehazing[J]. IEEE Trans Image Process, 32, 1927-1941(2023).
[43] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Trans Geosci Remote Sens, 55, 3965-3981(2017).
[44] Lei S, Shi Z W, Mo W J. Transformer-based multistage enhancement for remote sensing image super-resolution[J]. IEEE Trans Geosci Remote Sens, 60, 5615611(2022).
[45] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 13, 600-612(2004).
[49] Haut J M, Paoletti M E, Fernández-Beltran R et al. Remote sensing single-image superresolution based on a deep compendium model[J]. IEEE Geosci Remote Sens Lett, 16, 1432-1436(2019).
Get Citation
Copy Citation Text
Fei Wu, Jiacheng Chen, Jun Yang, Wanliang Wang, Guoqing Li. Remote-sensing images reconstruction based on adaptive dual-domain attention network[J]. Opto-Electronic Engineering, 2025, 52(4): 240297
Category: Article
Received: Dec. 17, 2024
Accepted: Feb. 17, 2025
Published Online: Jun. 11, 2025
The Author Email: Jun Yang (杨俊)