Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0412006(2025)

Welding-Stud Detection Method Based on Depth Perception and Multi-Scale Feature Fusion

Kaiqi Huang* and Chenkang Jin
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi , China
  • show less
    Figures & Tables(17)
    Overall framework of algorithm
    Feature enhancement FasterEMA module
    Structure of efficient multi-scale attention network
    Network structure of cascade group attention mechanism
    Structures of GSConv, GS bottleneck, and VoV-GSCSP. (a) GSConv; (b) GS bottleneck; (c) VoV-GSCSP
    Color and depth images acquired by camera
    Center coordinate of stud prediction box
    Detection scene and system composition
    Loss curve of ablation experiment
    Comparison of different model attention regions. (a) RT-DETR-R18; (b) proposed model
    Comparison of detection results. (a) RT-DETR-R18; (b) proposed model
    Localization performance graph
    • Table 1. Results of camera calibration

      View table

      Table 1. Results of camera calibration

      Intrinsic parametersCalibration results
      RGB camera /pixelDepth camera /pixel
      fx604.797385.678
      fy604.589385.678
      u0317.509321.942
      v0246.971237.924
    • Table 2. Experimental configuration table

      View table

      Table 2. Experimental configuration table

      ParameterConfiguration
      Operating systemWindows11
      Programming languagePython3.10
      Deep learning frameworkPyTorch2.1.0
      CPUAMD Ryzen 7 7840H
      GPUNVIDIA GeForce RTX 4060
      Graphics card accelerationCUDA11.8
      RAM/Gbit16
    • Table 3. Experimental training parameter settings

      View table

      Table 3. Experimental training parameter settings

      ParameterConfiguration
      Image size /(pixel×pixel)640×640
      Epoch100
      Batch size4
      Learning rate0.0001
    • Table 4. Ablation experiment

      View table

      Table 4. Ablation experiment

      ModelModuleRecall /%mAP@0.5 /%mAP@0.50∶0.95 /%Parameter /MBitGFLOPsFPS
      M1None80.084.054.138.656.963.5
      M2FasterEMA84.186.552.533.051.452.4
      M3FasterEMA+TECGA83.586.954.232.751.553.2
      M4FasterEMA+TECGA+SN-CCFM86.688.256.231.347.845.3
    • Table 5. Comparative experiments of different algorithms

      View table

      Table 5. Comparative experiments of different algorithms

      ModelmAP@0.5/%Parameter /MBitGFLOPsFPS
      RT-DETR84.038.656.963.5
      DETR76.941.672.728.9
      DINO85.347.5216.18.8
      Faster R-CNN79.041.3161.818.1
      YOLOv584.221.122.696.3
      YOLOv884.124.927.294.8
      Proposed model88.231.347.845.3
    Tools

    Get Citation

    Copy Citation Text

    Kaiqi Huang, Chenkang Jin. Welding-Stud Detection Method Based on Depth Perception and Multi-Scale Feature Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0412006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jun. 4, 2024

    Accepted: Jul. 5, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241420

    CSTR:32186.14.LOP241420

    Topics