Journal of Optoelectronics · Laser, Volume. 35, Issue 12, 1284(2024)
A new deep subspace network based on incremental row-column two-dimensional principal component analysis
[1] [1] KRIZHEVSKY A, SUTSKEVER S, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[2] [2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations (ICLR), May 7-9, 2015, San Diego, CA, USA. OpenReview.net, 2015: 1-14.
[3] [3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 1-9.
[4] [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 779-788.
[5] [5] ZHANG J H, LI C, YIN Y M, et al. Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer[J]. Artificial Intelligence Review, 2023,56(2): 1013-1070.
[6] [6] DAS H S, DAS A, NEOG A, et al. Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach[J]. Frontiers in Genetics, 2023,13: 1097207.
[8] [8] LI D S, HU X B, ZHANG H G, et al. A GAN based method for multiple prohibited items synthesis of X-ray security image[J]. Optoelectronics Letters, 2021,17(2): 112-117.
[9] [9] BRUNA J, MALLAT S. Invariant scattering convolution networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1872-1886.
[10] [10] CHAN T H, JIA K, GAO S, et al. PCANet: a simple deep learning baseline for image classification[J]. IEEE Transaction on Image Processing, 2015,24(12): 5017-5032.
[11] [11] ZHANG Y Q, GENG T Y, WU X, et al. ICANet: a simple cascade linear convolution network for face recognition[J]. EURASIP Journal on Image and Video Processing, 2018,1: 1-7.
[12] [12] KAUR S, CHAUDHARY G, KUMAR J D. PCANet based biometric system with fusion of palmprint and dorsal hand vein[J]. Journal of Intelligent & Fuzzy System, 2022,42(2): 841-849.
[14] [14] YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(1): 131-137.
[15] [15] YU D, WU X J.2DPCANet: a deep learning network for face recognition[J]. Multimedia Tools and Applications, 2018,77(10): 12919-12934.
[17] [17] WENG J, MCCLELLAND J, PENTLAND A, et al. Candid covariance-free incremental principal component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(8): 1034-1040.
[18] [18] GE W M, SUN M Y, WANG X F. An incremental two-dimensional principal component analysis for object recognition[J]. Mathematical Problems in Engineering.2018, 2018: 1-13.
Get Citation
Copy Citation Text
BI Hongxu, WANG Xiaofeng. A new deep subspace network based on incremental row-column two-dimensional principal component analysis[J]. Journal of Optoelectronics · Laser, 2024, 35(12): 1284
Category:
Received: May. 31, 2023
Accepted: Dec. 31, 2024
Published Online: Dec. 31, 2024
The Author Email: