Semiconductor Optoelectronics, Volume. 46, Issue 3, 396(2025)

Study on High-Voltage and High-Frequency Response Testing Link of Planar Wide Bandgap Semiconductor

WANG Ripin, LIU Fuyin, WANG Langning, YAO Jinmei, YI Muyu, and XUN Tao
Author Affiliations
  • College of Advanced Interdisciplinary Studies, Nationnal University of Defense Technology, Changsha 410073, CHN
  • show less
    References(23)

    [1] [1] Wu M, Shi W, Ma C, et al. Pulse width control based on blumlein pulse forming line and SI-GaAs PCSS[J]. Photonics, 2023, 10(2): 156.

    [2] [2] Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2701-2707.

    [6] [6] Levinshtein M E, Rumyantsev S L, Shur M S. Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe[M]. Hoboken: Wiley, 2001.

    [7] [7] Majda-Zdancewicz E, Suproniuk M, Pawowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102.

    [8] [8] Huang J, Hu L, Yang X, et al. Modeling and simulation of Fe-doped GaN PCSS in high-power microwave[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3489-3495.

    [9] [9] O’Connell R, Huang C J, Karabegovic A, et al. Optoelectronic microwave power amplifiers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 994-1001.

    [10] [10] Karabegovic A, O’Connell R M, Nunnally W C. Photoconductive switch design for microwave applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1011-1019.

    [11] [11] Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501.

    [12] [12] Choi P H, Kim Y P, Kim M S, et al. Side-illuminated photoconductive semiconductor switch based on high purity semi-insulating 4H-SiC[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6216-6221.

    [14] [14] He X, Zhang B, Liu S, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13.

    [15] [15] Hu L, Su J, Qiu R, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313.

    [16] [16] Jose M, Philippe G, Xavier P, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155- 2163.

    [17] [17] Tamulaitis G, Yilmaz I, Shur M S, et al. Carrier lifetime in conductive and vanadium-doped 6H-SiC substrates[J]. Applied Physics Letters, 2004, 84(3): 335-337.

    [18] [18] Mauch D, Sullivan W, Bullick A, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 2021-2031.

    [19] [19] Wu Q, Xun T, Zhao Y, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842.

    [20] [20] Wu Q, Zhao Y, Xun T, et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(7): 1167-1170.

    [21] [21] Xiao L, Yang X, Duan P, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808.

    [22] [22] Wang L, Chu X, Wu Q, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886.

    [23] [23] Chu X, Xun T, Wang L, et al. Breakdown behavior of GaAs PCSS with a backside-light-triggered coplanar electrode structure[J]. Electronics, 2021, 10(3): 357.

    [24] [24] Niu X, Wang R, Zeng L, et al. A photo-controlled, all-solid, and frequency-tunable ultra-wideband pulse generator[J]. Review of Scientific Instruments, 2023, 94(10): 103101.

    [25] [25] Sun X, Xiao L, Luan C, et al. Low ON-resistance and high peak voltage transmission efficiency based on high-purity 4H-SiC photoconductive semiconductor switch[J]. IEEE Transactions on Power Electronics, 2024, 39(2): 2013-2019.

    [26] [26] Qin Y, Luan C, Xiao L, et al. Investigating the performance of a lateral 4H-SiC photoconductive switch with a sinking-electrode structure[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 727-732.

    [27] [27] Yang X, Hu L, Yang Y, et al. Improved photocurrent for gallium nitride photoconductive semiconductor switch by SiO2 anti-reflection and (SiO2|Ta2O5)6 high-reflection dielectric films[J]. IEEE Electron Device Letters, 2023, 44(10): 1696-1699.

    Tools

    Get Citation

    Copy Citation Text

    WANG Ripin, LIU Fuyin, WANG Langning, YAO Jinmei, YI Muyu, XUN Tao. Study on High-Voltage and High-Frequency Response Testing Link of Planar Wide Bandgap Semiconductor[J]. Semiconductor Optoelectronics, 2025, 46(3): 396

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 14, 2025

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20250414005

    Topics