Journal of Semiconductors, Volume. 41, Issue 1, 012301(2020)
Quantum cascade superluminescent light emitters with high power and compact structure
[1] J Faist, F Capasso, D L Sivco et al. Quantum cascade laser. Science, 264, 553(1994).
[2] M S Vitiello, G Scalari, B Williams et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 23, 5167(2015).
[3] Z Y Zhang, R A Hogg, X Q Lv et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2, 201(2010).
[4] S Riedi, F Cappelli, S Blaser et al. Broadband superluminescence, 5.9
[5] N Zia, J Viheriala, E Koivusalo et al. GaSb superluminescent diodes with broadband emission at 2.55
[6] M E Brezinski, J G Fujimoto. Optical coherence tomography: high-resolutionimaging in nontransparent tissue. IEEE J Sel Top Quantum Electron, 5, 1185(1999).
[7] J G Fujimoto, C Pitris, S A Boppart et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2, 9(2000).
[8] Z Y Zhang, Z G Wang, B Xu et al. High-performance quantum-dot superluminescent diodes. IEEE Photon Technol Lett, 16, 27(2004).
[9] Q Jiang, Z Y Zhang, M Hopkinson et al. High performance intermixed p-doped quantum dot superluminescent diodes at 1.2
[10] S M Chen, K J Zhou, Z Y Zhang et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters. IEEE J Sel Top Quant, 19, 1900209(2013).
[11] A B Seddon. Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B, 250, 1020(2013).
[12] A I Lopez-Lorente, B Mizaikoff. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem, 408, 2875(2016).
[13] F F Wang, P Jin, J Wu et al. Active multi-mode-interferometer broadband superluminescent diodes. J Semicond, 37, 014006(2016).
[14] I Zorin, R Su, A Prylepa et al. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array. Opt Express, 26, 33428(2018).
[15] E A Zibik, W H Ng, D G Revin et al. Broadband 6
[16] N L Aung, Z Yu, Y Yu et al. High peak power (≥ 10 mW) quantum cascade superluminescent emitter. Appl Phys Lett, 105, 221111(2014).
[17] M C Zheng, N L Aung, A Basak et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express, 23, 2713(2015).
[18] F Causa, L Burrow. Ripple-free high-power super-luminescent diode arrays. IEEE J Quantum Electron, 43, 1055(2007).
[19] C C Hou, H M Chen, J C Zhang et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 7, 17170(2018).
[20] C C Hou, J L Sun, J Q Ning et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability. Opt Express, 26, 13730(2018).
[21] A F Fercher, W Drexler, C K Hitzenberger et al. Optical coherence tomography—principles andapplications. Rep Prog Phys, 66, 239(2003).
Get Citation
Copy Citation Text
Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301
Category: Articles
Received: Sep. 19, 2019
Accepted: --
Published Online: Sep. 10, 2021
The Author Email: