Optics and Precision Engineering, Volume. 32, Issue 18, 2792(2024)

Occluded target grasping detection method based on spatial information aggregation

Renxiang CHEN1、*, Tianran QIU1, Lixia YANG2, Zhitong ZHANG1, and Liang XIA3
Author Affiliations
  • 1Chongqing Jiaotong University, Chongqing Engineering Laboratory of Traffic Engineering Application Robot, Chongqing400074, China
  • 2School of Business Administration, Chongqing University of Science and Technology, Chongqing401331, China
  • 3Chongqing Intelligent Robot Research Institute, Chongqing 4000714, China
  • show less
    References(16)

    [1] [1] 吴培良, 刘瑞军, 李瑶, 等. 一种基于生成对抗网络与模型泛化的机器人推抓技能学习方法[J]. 仪器仪表学报, 2022, 43(5): 244-253.WUP L, LIUR J, LIY, et al. Robot pushing and grasping skill learning method based on generative adversarial network and model generalization[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 244-253.(in Chinese)

    [2] [2] 李文浩, 谭宇飞, 周登科, 等. 融合多光学传感及变积分PID算法的搬运机器人[J]. 光学 精密工程, 2023, 31(23): 3504-3516. doi: 10.37188/ope.20233123.3504LIW H, TANY F, ZHOUD K, et al. Transport robot integrating multi channel optical sensing and variable integral pid algorithm[J]. Opt. Precision Eng., 2023, 31(23): 3504-3516.(in Chinese). doi: 10.37188/ope.20233123.3504

    [3] FANG H S, WANG C X, GOU M H et al. GraspNet-1Billion: a large-scale benchmark for general object grasping[C], 11441-11450(2020).

    [4] YANG D, TOSUN T, EISNER B et al. Robotic grasping through combined image-based grasp proposal and 3D reconstruction[C], 6350-6356(2021).

    [5] LENZ I, LEE H, SAXENA A. Deep learning for detecting robotic grasps[J]. The International Journal of Robotics Research, 34, 705-724(2015).

    [6] KUMRA S, JOSHI S, SAHIN F. Antipodal robotic grasping using generative residual convolutional neural network[C], 9626-9633(2020).

    [7] YU S, ZHAI D H, XIA Y Q et al. SE-ResUNet: a novel robotic grasp detection method[J]. IEEE Robotics and Automation Letters, 7, 5238-5245(2022).

    [8] WANG S C, ZHOU Z L, KAN Z. When transformer meets robotic grasping: exploits context for efficient grasp detection[J]. IEEE Robotics and Automation Letters, 7, 8170-8177(2022).

    [9] [9] 徐胜军, 任君琳, 刘光辉, 等. 基于上下文聚合策略的轻量级编/解码抓取位姿检测[J]. 机器人, 2023, 45(6): 641-654.XUS J, RENJ L, LIUG H, et al. Lightweight encoding-decoding grasp pose detection based on a context aggregation strategy[J]. Robot, 2023, 45(6): 641-654.(in Chinese)

    [10] [10] 李明, 鹿朋, 朱龙, 等. 基于RGB-D融合的密集遮挡抓取检测[J]. 控制与决策, 2023, 38(10): 2867-2874, 中插16-中插19.LIM, LUP, ZHUL, et al. Densely occluded grasping objects detection based on RGB-D fusion[J]. Control and Decision, 2023, 38(10): 2867-2874, 中插16-中插19.(in Chinese)

    [11] [11] 牛小明, 曾理, 杨飞, 等. 零部件光学影像精准定位的轻量化深度学习网络[J]. 光学 精密工程, 2023, 31(17): 2611-2625. doi: 10.37188/ope.20233117.2611NIUX M, ZENGL, YANGF, et al. Lightweight deep learning network for accurate localization of optical image components[J]. Opt. Precision Eng., 2023, 31(17): 2611-2625.(in Chinese). doi: 10.37188/ope.20233117.2611

    [12] OUYANG D L, HE S, ZHANG G Z et al. Efficient multi-scale attention module with cross-spatial learning[C], 1-5(2023).

    [13] MORRISON D, CORKE P, LEITNER J. Learning robust, real-time, reactive robotic grasping[J]. The International Journal of Robotics Research, 39, 183-201(2020).

    [14] DEPIERRE A, DELLANDRÉA E, CHEN L M. Jacquard: a large scale dataset for robotic grasp detection[C], 3511-3516(2018).

    [15] [15] 程德强, 张华强, 寇旗旗, 等. 基于层级特征融合的室内自监督单目深度估计[J]. 光学 精密工程, 2023, 31(20): 2993-3009. doi: 10.37188/ope.20233120.2993CHENGD Q, ZHANGH Q, KOUQ Q, et al. Indoor self-supervised monocular depth estimation based on level feature fusion[J]. Opt. Precision Eng., 2023, 31(20): 2993-3009.(in Chinese). doi: 10.37188/ope.20233120.2993

    [16] [16] 楚红雨, 冷齐齐, 张晓强, 等. 融入注意力机制的多模特征机械臂抓取位姿检测[J]. 控制与决策, 2024, 39(3): 777-785.CHUH Y, LENGQ Q, ZHANGX Q, et al. Multi-modal feature robotic arm grasping pose detection with attention mechanism[J]. Control and Decision, 2024, 39(3): 777-785.(in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Renxiang CHEN, Tianran QIU, Lixia YANG, Zhitong ZHANG, Liang XIA. Occluded target grasping detection method based on spatial information aggregation[J]. Optics and Precision Engineering, 2024, 32(18): 2792

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 16, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: Renxiang CHEN (manlou.yue@126.com)

    DOI:10.37188/OPE.20243218.2792

    Topics