Acta Optica Sinica, Volume. 44, Issue 16, 1619002(2024)

Digital Back Propagation Optimization Algorithm Based on Step-Size Optimization and Power Compensation Factor

Lifu Zhang1, Tao Zhang1, Mengyan Li1, Heming Deng1、*, Fengguang Luo2, and Liu Yang1、**
Author Affiliations
  • 1Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, Hubei , China
  • 2National Engineering Research Center for Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • show less
    Figures & Tables(13)
    Principle of DBP
    Power comparisons between real fiber and virtual fiber with different steps
    Comparisons of power propagation of CS-DBP, LS-DBP and EP-DBP with the same step size
    Fitting comparisons of different power compensation factors
    Optimization process of power compensation factor using genetic algorithm
    Simulation model for long-distance coherent optical communication
    Relationships between Q factor and launch power of EDC, CS-DBP, LS-DBP, EP-DBP algorithms in single-channel Nyquist 32 Gbaud system, respectively. (a) 4QPSK-2400 km; (b) 16QAM-1500 km; (c) 64QAM-1000 km
    Comparisons of bit error rates and OSNR of EDC, 10 step CS-DBP, 5 step LS-DBP, 5 step EP-DBP algorithms in single-channel Nyquist 32 Gbaud system, respectively. (a) 4QPSK-2000 km; (b) 16QAM-1200 km
    Relationships between Q factor of the EDC, CS-DBP, LS-DBP and EP-DBP algorithms versus step number per span in 32 Gbaud Nyquist system, respectively
    • Table 1. Pseudo-code of genetic algorithm

      View table

      Table 1. Pseudo-code of genetic algorithm

      StepAlgorithm
      1Initialization: λP,i,j=1+xbias, random
      2Iteration: for n=1, 2, …, maximum generation do
      3Calculate fitness: xFitness, i=fFunλP,i,1,,λP,i,j
      4Select: Ps,k=1mxFitness, i-1mxFitness, i-xFitness, k
      5Cross: λP,i,n=λP,i,n·Pc+λP,l,n·1-Pc
      6

      Mutation: λP,i,n=λP,i,n1+xbias, nPm+

      λP,i,n1-xbias, n(1-Pm)

      7Loop end
    • Table 2. System setting

      View table

      Table 2. System setting

      ParameterValue
      Fiber length /km100
      Attenuation coefficient α /(dB/m)0.2×10-3
      Dispersion coefficient β /(s/m2)16×10-16
      Nonlinear refractivity coefficient γ /(m2/W)2.6×10-20
      EDFA gain /dB20
      EDFA noise figure /dB4
    • Table 3. Step lengths for different step design methods

      View table

      Table 3. Step lengths for different step design methods

      Step-sizeFirst step /kmSecond step /kmThird step /kmFourth step /kmFifth step /km
      Constant step-size20.0020.0020.0020.0020.00
      Logarithmic step-size68.3413.538.005.704.43
      Equal power step-size44.7221.5614.3410.768.62
    • Table 4. Comparison of complexity and cerformance

      View table

      Table 4. Comparison of complexity and cerformance

      AlgorithmPre-optimizedRMPBQ factor /dB
      CS-10 stepNoneln L+510+68.92
      LS-5 stepLSln L+510+68.96
      EP-5 stepEPln L+510+69.27
      EP-5 step-GAEP+GAln L+510+69.46
    Tools

    Get Citation

    Copy Citation Text

    Lifu Zhang, Tao Zhang, Mengyan Li, Heming Deng, Fengguang Luo, Liu Yang. Digital Back Propagation Optimization Algorithm Based on Step-Size Optimization and Power Compensation Factor[J]. Acta Optica Sinica, 2024, 44(16): 1619002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Mar. 12, 2024

    Accepted: May. 6, 2024

    Published Online: Aug. 5, 2024

    The Author Email: Heming Deng (dengheming@hubu.edu.cn), Liu Yang (liuyang89@hubu.edu.cn)

    DOI:10.3788/AOS240725

    CSTR:32393.14.AOS240725

    Topics