Chinese Journal of Lasers, Volume. 52, Issue 6, 0604003(2025)

Multi‐Object Tracking Based on YOLOv8 and Quasi‐Dense Similarity Learning

Wenwu Cao, Daqun Li*, Zhijia Wu, and Jianzhuo Liu
Author Affiliations
  • Precision Instrument and Equipment R & D Center, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • show less
    Figures & Tables(12)
    Overall framework of multi- object tracking
    Network Framework of YOLOv8
    CBAM framework
    Improved YOLOv8 network framework with CBAM introduced
    Similarity learning framework of adjacent keyframe. (a) Key image; (b) reference image
    AFLink framework
    Tracking effects of module ablation experiment. (a)‒(c) Before model improvement; (d)‒(f) after model improvement
    Experimental test results of multiple airplane images. (a) 71st frame image in video clip 1; (b) 236th frame image in video clip 1; (c) 56th frame image in video clip 2; (d) 189th frame image in video clip 2
    • Table 1. MOT evaluation indicators

      View table

      Table 1. MOT evaluation indicators

      IndicatorDefinition
      MOTA (↑)Multiple object tracking accuracy
      IDF1 (↑)Identity F1 score
      HOTA (↑)High order tracking accuracy
      ID1 (↓)Number of changes in target tracking ID
      FN (↓)Number of missed detections
      FP (↓)Number of false detections
      FPS (↑)frame rate
    • Table 2. Results of module ablation experiments

      View table

      Table 2. Results of module ablation experiments

      QDSLSoftMaxCBAMGSIAFLinkMOTA/%IDF1/%
      76.985.7
      77.185.8
      77.586.0
      80.286.7
      80.587.2
      80.787.4
    • Table 3. Comparative experimental results under different threshold parameters

      View table

      Table 3. Comparative experimental results under different threshold parameters

      βobjβmatchβnewMOTA /%IDF1 /%
      0.850.900.9880.6587.37
      0.800.900.9880.5887.38
      0.900.900.9880.5787.31
      0.850.850.9880.6287.32
      0.850.850.9880.6587.34
      0.850.900.9580.7087.40
      0.850.901.0080.6787.38
      0.800.850.9580.7087.37
      0.900.901.0080.6887.40
    • Table 4. Comparative experimental results of different algorithms

      View table

      Table 4. Comparative experimental results of different algorithms

      AlgorithmMOTA /%IDF1 /%ID1FPFN
      ByteTrack70.279.3214064175
      SORT70.580.6194324296
      deepSORT71.382.4149863592
      Ours72.483.0117492841
    Tools

    Get Citation

    Copy Citation Text

    Wenwu Cao, Daqun Li, Zhijia Wu, Jianzhuo Liu. Multi‐Object Tracking Based on YOLOv8 and Quasi‐Dense Similarity Learning[J]. Chinese Journal of Lasers, 2025, 52(6): 0604003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Measurement and metrology

    Received: Sep. 30, 2024

    Accepted: Oct. 31, 2024

    Published Online: Mar. 18, 2025

    The Author Email: Daqun Li (ldq_1221@163.com)

    DOI:10.3788/CJL241243

    CSTR:32183.14.CJL241243

    Topics