Chinese Journal of Lasers, Volume. 52, Issue 6, 0609001(2025)

Interference Fringe Denoising Algorithm Based on Sine‐Cosine Decomposition and DCT Domain

Yu Liu and Gehua Chen*
Author Affiliations
  • School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, Jilin , China
  • show less
    Figures & Tables(13)
    Schematic of DPI imaging system equipment
    Interference fringe pattern and its details. (a) Original interference fringe pattern; (b) detail extraction range
    Traditional filtering results. (a) Image detail; (b) detail after mean filtering; (c) detail after median filtering
    DCT frequency domain diagram
    Result after direct use of high-pass filter
    Flowchart of denoising algorithm based on sine-cosine decomposition and DCT frequency domain
    Sine-cosine decomposition and its DCT frequency domain images. (a) Sine mapping image; (b) sine DCT spectrum; (c) filtered sine image; (d) filtered sine DCT spectrum; (e)‒(h) corresponding cosine decomposition images
    Filtering results and frequency domain images. (a) Filtering result image; (b) DCT frequency domain image of original image; (c) filtered DCT frequency domain image; (d) residual noise image; (e) detail after filtering
    Comparison of filtering effects of simulated interference fringes. (a) Noise-free simulated fringe image; (b) detail extraction image; (c) noisy simulated fringe image; (d) mean filtering; (e) median filtering; (f) wavelet denoising; (g) isotropic diffusion filtering; (h) anisotropic diffusion filtering; (i) FNLM algorithm; (j) WNNM algorithm; (k) N2N; (l) algorithm presented in this paper
    Comparison of filtering effects of real interference fringes. (a) Original detail extraction image; (b) mean filtering; (c) median filtering; (d) wavelet denoising; (e) isotropic diffusion filtering; (f) anisotropic diffusion filtering; (g) FNLM algorithm; (h) WNNM algorithm; (i) N2N; (j) algorithm presented in this paper
    Comparison of phase shift changes before and after denoising. (a) Channel 1; (b) channel 2
    • Table 1. Results of simulation experiments

      View table

      Table 1. Results of simulation experiments

      MethodrPSNR/dBβSSIMMethodrPSNR/dBβSSIM
      Mean10.04410.32126FNLM24.25620.94696
      Median9.12580.32572WNNM23.45270.93791
      WT13.09270.63022N2N25.22490.93035
      Isotropic diffusion18.34010.88800Ours24.31740.94758
      Anisotropic diffusion18.16160.87851
    • Table 2. Denoising effects of real interference fringe images

      View table

      Table 2. Denoising effects of real interference fringe images

      MethodrPSNR /dBβSSIMMethodrPSNR /dBβSSIM
      Mean34.14950.91217FNLM34.20550.88076
      Median30.85270.87079WNNM35.93230.96164
      WT34.53570.90794N2N34.94880.97245
      Isotropic diffusion35.02610.93458Ours36.88560.95626
      Anisotropic diffusion32.18920.89441
    Tools

    Get Citation

    Copy Citation Text

    Yu Liu, Gehua Chen. Interference Fringe Denoising Algorithm Based on Sine‐Cosine Decomposition and DCT Domain[J]. Chinese Journal of Lasers, 2025, 52(6): 0609001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: holography and information processing

    Received: Aug. 2, 2024

    Accepted: Oct. 6, 2024

    Published Online: Mar. 18, 2025

    The Author Email: Gehua Chen (chengehua@ccut.edu.cn)

    DOI:10.3788/CJL241115

    CSTR:32183.14.CJL241115

    Topics