Journal of Infrared and Millimeter Waves, Volume. 40, Issue 4, 530(2021)

Remote sensing image scene classification based on multilayer feature context encoding network

Ruo-Yao LI1,2, Bo ZHANG1,2, and Bin WANG1,2、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Research Center of Smart Networks and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    Figures & Tables(11)
    The illustration of the architecture of DenseNet
    The framework of the proposed MFCE network Note: ⊙ and ↑ denote the channel concatenation operation and the spatial up-sampling operation, respectively
    Samples of remote sensing images (a) AID dataset,(b) NWPU-RESISC45 dataset
    Test accuracy with MFCE network and Fine-tuned DenseNet-121 (a) AID dataset, (b) NWPU-RESISC45 dataset
    Visual comparison of heatmaps among MFCE andFine-tuned DenseNet-121 for NWPU-RESISC45 dataset Note: (d-f) heatmaps of the baseline,and (g-i) MFCE network
    • Table 1. OA of different methods on AID dataset with different training ratios

      View table
      View in Article

      Table 1. OA of different methods on AID dataset with different training ratios

      MethodOA
      Tr=20%Tr=50%
      VGG-VD-161786.59±0.2989.64±0.36
      Fine-tuned DenseNet-12194.75±0.1896.56±0.17
      FACNN12-95.45±0.11
      D-CNN with VGGNet-16790.82±0.1696.89±0.10
      VGG-VD16+MSCP+MRA1192.21±0.1796.56±0.18
      MFCE (ours)95.51±0.0997.14±0.19
    • Table 2. OA of different methods on NWPU-RESISC45 dataset with different training ratios

      View table
      View in Article

      Table 2. OA of different methods on NWPU-RESISC45 dataset with different training ratios

      MethodOA
      Tr=10%Tr=20%
      VGGNet-161887.15±0.4590.36±0.18
      Fine-tuned DenseNet-12191.56±0.2193.72±0.20
      FACNN12--
      VGG-VD16+MSCP+MRA1188.07±0.1890.81±0.13
      D-CNN with VGGNet-16789.22±0.5091.89±0.22
      MFCE (ours)92.42±0.2094.40±0.09
    • Table 3. Results of MFCE network adopting different levels of multiscale pooling on AID dataset and NWPU-RESISC45 dataset

      View table
      View in Article

      Table 3. Results of MFCE network adopting different levels of multiscale pooling on AID dataset and NWPU-RESISC45 dataset

      MethodsOA
      AID (Tr=20%)NWPU-RESISC45 (Tr=10%)
      MFCE (2, 4, 6)95.16±0.2092.17±0.28
      MFCE (2, 4, 6, 8)95.51±0.0992.42±0.20
    • Table 4. Comparison of different methods on AID dataset and NWPU-RESISC45 dataset

      View table
      View in Article

      Table 4. Comparison of different methods on AID dataset and NWPU-RESISC45 dataset

      MethodOA
      AID (Tr=20%)NWPU-RESISC45 (Tr=10%)
      Fine-tuned DenseNet-12194.75±0.1891.56±0.21
      MFCE without Context Encoding94.92±0.1991.52±0.30
      MFCE95.51±0.0992.42±0.20
    • Table 5. Results of MCE module combined with different backbones and baselines on AID dataset

      View table
      View in Article

      Table 5. Results of MCE module combined with different backbones and baselines on AID dataset

      MethodOA
      Fine-tuned VGGNet-1690.19±0.38
      Fine-tuned ResNet-1893.10±0.35
      Fine-tuned DenseNet-12194.75±0.18
      VGGNet-16+MCE (ours)91.57±0.26
      ResNet-18+MCE (ours)94.08±0.20
      MFCE (ours)95.51±0.09
    • Table 6. Parameters and MACs of different networks

      View table
      View in Article

      Table 6. Parameters and MACs of different networks

      MethodsParametersMACs
      VGGNet-165138.36M15.48G
      ResNet-181911.69M1.82G
      DenseNet-121137.98M2.87G
      VGGNet-16+MCE (ours)15.52M20.10G
      ResNet-18+MCE (ours)11.98M2.42G
      MFCE (ours)10.14M3.91G
    Tools

    Get Citation

    Copy Citation Text

    Ruo-Yao LI, Bo ZHANG, Bin WANG. Remote sensing image scene classification based on multilayer feature context encoding network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 530

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 9, 2020

    Accepted: --

    Published Online: Sep. 9, 2021

    The Author Email: Bin WANG (wangbin@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2021.04.012

    Topics