Laser & Optoelectronics Progress, Volume. 61, Issue 15, 1512006(2024)

X-Ray Rapid Decentralized Detection Model of U2-Net with Dilated Convolution Optimization

Jiao Wang1, Meng Wu2、*, and Jiankai Xiang3
Author Affiliations
  • 1School of Mathematics and Computer Science, Yan'an University, Yan'an 716000, Shaanxi, China
  • 2School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 3Shaanxi Institute for the Preservation of Cultural Heritage, Xi'an 710075, Shaanxi, China
  • show less
    Figures & Tables(15)
    Shuffle Attention model structure diagram
    Structure diagram of UD-block model
    Details of the 6-layer UD-block module
    Schematic diagram of misplaced links
    Pyramid-divided attention module network framework
    Improved image segmentation network framework of U2-Net
    X-ray images of copper mirror under test (top is whole picture, bottom is partial picture on the lower left)
    Segmentation and comparison of the copper mirror under test. (a) image of the copper mirror under test; (b) Manually annotated maps; (c) U2-Net; (d) U2-Net+PSA; (e) U2-Net+PSA+SA; (f) U2-Net+PSA+SA+ misplaced link; (g) U2-Net+PSA+SA+ misplaced link +UD-block
    Comparison of the segmentation details of the copper mirror under test. (a) Image of the copper mirror under test; (b) manually annotated maps; (c) U2-Net; (d) U2-Net+PSA; (e) U2-Net+PSA+SA; (f) U2-Net+PSA+SA+ misplaced link; (g) U2-Net+PSA+SA+ misplaced link +UD-block
    Comparison of algorithm segmentation of copper mirror under test
    • Table 0. [in Chinese]

      View table

      Table 0. [in Chinese]

      GroupEvaluation indexDiceAccuracyJaccardHDPSNRRMSE
      Group 1Fig. 8(c)0.51790.50130.3495238.000018.481430.3717
      Fig. 8(d)0.57450.49270.4030148.054018.622429.8827
      Fig. 8(e)0.82560.77980.7030196.461222.831318.4065
      Fig. 8(f)0.88910.93060.800372.498326.300512.3456
      Fig. 8(g)0.89750.95130.814134.713126.981411.4148
      Change↑0.3796↑0.4500↑0.4646↓203.2869↑8.5000↓18.9569
      Group 2Fig. 8(c)0.74720.62130.5965165.722719.802326.0871
      Fig. 8(d)0.74470.61220.5933136.033119.838025.9802
      Fig. 8(e)0.85050.82010.7398169.685019.585726.7457
      Fig. 8(f)0.88160.91220.7883127.310622.970218.1146
      Fig. 8(g)0.89290.94320.806437.855023.739416.5794
      Change↑0.1457↑0.3219↑0.2099↓127.8677↑3.9371↓9.5077
      Group 3Fig. 8(c)0.69160.53240.5286105.261620.981522.7754
      Fig. 8(d)0.71480.56100.5562122.967521.198422.2137
      Fig. 8(e)0.87780.94360.7822100.498825.313413.8315
      Fig. 8(f)0.88650.94810.796269.115826.311312.3304
      Fig. 8(g)0.88900.95550.800169.115826.360212.2612
      Change↑0.1974↑0.4231↑0.2715↓36.1458↑5.3787↓10.5142
      Group 4Fig. 8(c)0.87050.93690.770824.413123.994316.0999
      Fig. 8(d)0.87050.93690.770824.413123.994316.0999
      Fig. 8(e)0.87220.94750.773417.000029.02329.0236
      Fig. 8(f)0.87280.94880.774317.000029.12878.9147
      Fig. 8(g)0.87430.95450.77678.062330.34517.7497
      Change↑0.0038↑0.0176↑0.0059↓16.3508↑6.3508↓8.3502
      Group 5Fig. 8(c)0.76940.82770.6253138.715519.367427.4265
      Fig. 8(d)0.76940.82770.6253138.715519.367427.4265
      Fig. 8(e)0.76750.83600.6227138.715521.274022.0212
      Fig. 8(f)0.78160.88350.6415139.086322.157019.8925
      Fig. 8(g)0.79370.90910.6580102.839722.716718.6511
      Change↑0.0243↑0.0814↑0.0327↓35.8758↑3.3493↓8.7754
    • Table 1. Subjective evaluation table of cultural relic segmentation experts

      View table

      Table 1. Subjective evaluation table of cultural relic segmentation experts

      GradeSegmentation effectScore
      L1Best segmentation effect7
      L2Segmentation effect above average level6
      L3Slightly above average segmentation effect5
      L4Average level segmentation effect4
      L5Segmentation effect slightly below average level3
      L6Segmentation effect below average level2
      L7Worst segmentation effect1
    • Table 3. Subjective evaluation results

      View table

      Table 3. Subjective evaluation results

      GroupFig. 9(c)Fig. 9(d)Fig. 9(e)Fig. 9(f)Fig. 9(g)
      Group 11.473.574.575.576.57
      Group 21.603.604.605.606.60
      Group 31.733.574.575.576.57
      Group 43.203.404.575.576.57
      Group 53.173.374.605.606.60
    • Table 4. Objective evaluation results of different algorithms on different images

      View table

      Table 4. Objective evaluation results of different algorithms on different images

      GroupEvaluation indexDiceAccuracyJaccardHDPSNRRMSE
      Group 1U2-Net0.51790.50130.3495238.000018.481430.3717
      U-Net0.39800.25830.248474.527018.220331.2986
      Robert0.14910.13350.0805500.273014.895545.8948
      EC0.17860.25360.0981502.245017.194135.2235
      Proposed algorithm0.89750.95130.814134.713126.981411.4148
      Group 2U2-Net0.74720.62130.5965165.722719.802326.0871
      U-Net0.43140.38650.2750362.596014.821146.2895
      Robert0.24090.17150.1370175.149014.919045.7707
      EC0.34150.31150.2059175.855016.318038.9617
      Proposed algorithm0.89290.94320.806437.855023.739416.5794
      Group 3U2-Net0.69160.53240.5286105.261620.981522.7754
      U-Net0.52700.41990.3578160.639017.758833.0067
      Robert0.28670.24400.1673280.608014.661747.1468
      EC0.40520.56130.2541281.853016.912736.3834
      Proposed algorithm0.88900.95550.800169.115826.360212.2612
      Group 4U2-Net0.87050.93690.770824.413123.994316.0999
      U-Net0.29310.25980.1717397.186018.942728.8009
      Robert0.16510.14270.090030.265517.566833.7439
      EC0.49090.62890.3253388.888020.983022.7726
      Proposed algorithm0.87430.95450.77678.062330.34517.7497
      Group 5U2-Net0.76940.82770.6253138.715519.367427.4265
      U-Net0.30730.26640.1815141.014016.475338.2624
      Robert0.25860.17450.1485141.032015.772441.4874
      EC0.47380.37300.3105140.032017.298934.8013
      Proposed algorithm0.79370.90910.6580102.839722.716718.6511
    • Table 5. Comparison of running time of different segmentation detection algorithms

      View table

      Table 5. Comparison of running time of different segmentation detection algorithms

      AlgorithmECU-NetRobertU2-Net
      Running time /ms191035933
      AlgorithmU2-Net+PSAU2-Net+PSA+SAU2-Net+PSA+SA+Double layer dislocation linkProposed algorithm
      Running time /ms38454952
    Tools

    Get Citation

    Copy Citation Text

    Jiao Wang, Meng Wu, Jiankai Xiang. X-Ray Rapid Decentralized Detection Model of U2-Net with Dilated Convolution Optimization[J]. Laser & Optoelectronics Progress, 2024, 61(15): 1512006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: May. 17, 2024

    Accepted: Jul. 10, 2024

    Published Online: Aug. 12, 2024

    The Author Email: Meng Wu (wumeng@xauat.edu.cn)

    DOI:10.3788/LOP241315

    CSTR:32186.14.LOP241315

    Topics