Chinese Journal of Lasers, Volume. 49, Issue 19, 1901001(2022)
Laser Self-Injection Locking Technique Based on Whispering Gallery Mode Resonator
[1] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).
[2] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).
[3] Sumetsky M. Whispering-gallery-bottle microcavities: the three-dimensional etalon[J]. Optics Letters, 29, 8-10(2004).
[4] McCall S L, Levi A F J, Slusher R E et al. Whispering-Gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).
[5] Wen Q, Qin J H, Zhou H et al. Controllable excitation of whispering gallery mode micro-rod resonator[J]. Acta Optica Sinica, 40, 1919001(2020).
[6] Savchenkov A A, Matsko A B, Strekalov D et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator[J]. Physical Review Letters, 93, 243905(2004).
[7] Moss D J, Morandotti R, Gaeta A L et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature Photonics, 7, 597-607(2013).
[8] Song Q H, Ge L, Stone A D et al. Directional laser emission from a wavelength-scale chaotic microcavity[J]. Physical Review Letters, 105, 103902(2010).
[9] Kippenberg T J, Vahala K J. Cavity optomechanics: back-action at the mesoscale[J]. Science, 321, 1172-1176(2008).
[10] Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution[J]. Nature Photonics, 10, 733-739(2016).
[11] Lin G P, Coillet A, Chembo Y K. Nonlinear photonics with high-Q whispering-gallery-mode resonators[J]. Advances in Optics and Photonics, 9, 828-890(2017).
[12] Zhou Y Y, Yu X, Zhang H X et al. Metallic diffraction grating enhanced coupling in whispering gallery resonator[J]. Optics Express, 21, 8939-8944(2013).
[13] Zhou Y Y, Zhu D, Yu X et al. Fano resonances in metallic grating coupled whispering gallery mode resonator[J]. Applied Physics Letters, 103, 151108(2013).
[14] Zhang F X, Feng Y M, Chen X F et al. Synthetic anti-PT symmetry in a single microcavity[J]. Physical Review Letters, 124, 053901(2020).
[15] Hodaei H, Miri M A, Heinrich M et al. Parity-time-symmetric microring lasers[J]. Science, 346, 975-978(2014).
[16] Zhang X Y, Cao Q T, Wang Z et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).
[17] Al-Taiy H, Wenzel N, Preußler S et al. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy[J]. Optics Letters, 39, 5826-5829(2014).
[18] Takamoto M, Hong F L, Higashi R et al. An optical lattice clock[J]. Nature, 435, 321-324(2005).
[19] Jiang Y Y, Ludlow A D, Lemke N D et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 5, 158-161(2011).
[20] Cygan A, Lisak D, Morzyński P et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser[J]. Optics Express, 21, 29744-29754(2013).
[21] Adhikari R X. Gravitational radiation detection with laser interferometry[J]. Reviews of Modern Physics, 86, 121-151(2014).
[22] Gu B B, Zhou Y Y, Yu X et al. Fiber loop laser stabilized by fano resonance in metallic grating coupled resonator[J]. IEEE Photonics Technology Letters, 28, 1597-1600(2016).
[23] Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation[J]. Nature Physics, 3, 430-435(2007).
[24] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).
[25] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 415, 621-623(2002).
[26] Lin G P, Diallo S, Saleh K et al. Cascaded Brillouin lasing in monolithic Barium fluoride whispering gallery mode resonators[J]. Applied Physics Letters, 105, 231103(2014).
[27] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).
[28] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).
[29] Drake T E, Briles T C, Stone J R et al. Terahertz-rate kerr-microresonator optical clockwork[J]. Physical Review X, 9, 031023(2019).
[30] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).
[31] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).
[32] Schiller S. Asymptotic expansion of morphological resonance frequencies in Mie scattering[J]. Applied Optics, 32, 2181-2185(1993).
[33] Zou C L, Yang Y, Xiao Y F et al. Accurately calculating high quality factor of whispering-gallery modes with boundary element method[J]. Journal of the Optical Society of America B, 26, 2050-2053(2009).
[34] Zou C L, Schwefel H G L, Sun F W et al. Quick root searching method for resonances of dielectric optical microcavities with the boundary element method[J]. Optics Express, 19, 15669-15678(2011).
[35] Hall J M M, Afshar V S, Henderson M R et al. Method for predicting whispering gallery mode spectra of spherical microresonators[J]. Optics Express, 23, 9924-9937(2015).
[36] Zheng Y, Wu Z F, Shum P P et al. Sensing and lasing applications of whispering gallery mode microresonators[J]. Opto-Electronic Advances, 1, 4-13(2018).
[37] Puckett M W, Liu K K, Chauhan N et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth[J]. Nature Communications, 12, 934(2021).
[38] Yan Y Z, Zou C L, Yan S B et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application[J]. Optics Express, 19, 5753-5759(2011).
[39] Wang P F, Ding M, Lee T et al. Packaged chalcogenide microsphere resonator with high Q-factor[J]. Applied Physics Letters, 102, 131110(2013).
[40] Wang P F, Ding M, Murugan G S et al. Packaged, high-Q, microsphere-resonator-based add-drop filter[J]. Optics Letters, 39, 5208-5211(2014).
[41] Kavungal V, Farrell G, Wu Q et al. A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator[J]. Journal of Lightwave Technology, 36, 1757-1765(2018).
[42] Dong Y C, Wang K Y, Jin X Y. Packaged microsphere-taper coupling system with a high Q factor[J]. Applied Optics, 54, 277-284(2015).
[43] Wang M Y, Yang Y, Meng L J et al. Fabrication and packaging for high-Q CaF2 crystalline resonators with modal modification[J]. Chinese Optics Letters, 17, 111401(2019).
[44] Zhang M, Yang W L, Tian K et al. In-fiber whispering-gallery mode microsphere resonator-based integrated device[J]. Optics Letters, 43, 3961-3964(2018).
[45] Wang J W, Zhang X B, Yan M et al. Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber[J]. Photonics Research, 6, 1124-1129(2018).
[46] Bai X Q, Wang D N. Whispering-gallery-mode excitation in a microsphere by use of an etched cavity on a multimode fiber end[J]. Optics Letters, 43, 5512-5515(2018).
[47] Zhou Y Y, Ding W, Gu B B et al. Power transfer mechanism of metallic grating coupled whispering gallery microsphere resonator[J]. Optics Letters, 40, 1908-1911(2015).
[48] Zhou Y Y, Luan F, Gu B B et al. Controlled excitation of higher radial order whispering gallery modes with metallic diffraction grating[J]. Optics Express, 23, 4991-4996(2015).
[49] Li A Z, Tian K, Yu J B et al. Packaged whispering gallery resonator device based on an optical nanoantenna coupler[J]. Optics Express, 29, 16879-16886(2021).
[50] Ward J M, Lei F C, Vincent S et al. Excitation of whispering gallery modes with a point-and-play, fiber-based, optical nano-antenna[J]. Optics Letters, 44, 3386-3389(2019).
[51] Grudinin I S, Ilchenko V S, Maleki L. Ultrahigh optical Q factors of crystalline resonators in the linear regime[J]. Physical Review A, 74, 063806(2006).
[52] Savchenkov A A, Matsko A B, Ilchenko V S et al. Optical resonators with ten million finesse[J]. Optics Express, 15, 6768-6773(2007).
[53] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011).
[54] Righini G C, Dumeige Y, Féron P et al. Whispering gallery mode microresonators: fundamentals and applications[J]. La Rivista Del Nuovo Cimento, 34, 435-488(2011).
[55] Zhang W, Stern L, Carlson D et al. Ultranarrow linewidth photonic-atomic laser[J]. Laser & Photonics Reviews, 14, 1900293(2020).
[56] Chen J G, Liu Q W, He Z Y. Feedforward laser linewidth narrowing scheme using acousto-optic frequency shifter and direct digital synthesizer[J]. Journal of Lightwave Technology, 37, 4657-4664(2019).
[57] Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 49, 4801-4807(2010).
[58] Liang W, Ilchenko V S, Eliyahu D et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 6, 7371(2015).
[59] Wang Z H, Ke C J, Zhong Y B et al. Ultra-narrow-linewidth measurement utilizing dual-parameter acquisition through a partially coherent light interference[J]. Optics Express, 28, 8484-8493(2020).
[60] Jiang L D, Shi L L, Luo J et al. Simultaneous self-injection locking of two VCSELs to a single whispering-gallery-mode microcavity[J]. Optics Express, 29, 37845-37851(2021).
[61] Jiang L D, Shi L L, Luo J et al. Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter[J]. Optics Letters, 46, 2320-2323(2021).
[62] Ji J R, Wang H T, Ma J et al. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration[J]. Optics Letters, 47, 1525-1528(2022).
[63] Jin W, Yang Q F, Chang L et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 15, 346-353(2021).
[64] Tang L W, Jia H X, Shao S et al. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity[J]. Photonics Research, 1948-1957(2021).
[65] Li Y, Zhang Y J, Chen H W et al. Tunable self-injected Fabry-Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator[J]. Journal of Lightwave Technology, 36, 3269-3274(2018).
[66] Shao S, Li J C, Wu Y H et al. Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector[J]. Optics Letters, 46, 3251-3254(2021).
[67] Savchenkov A A, Eliyahu D, Heist B et al. On acceleration sensitivity of 2 μm whispering gallery mode-based semiconductor self-injection locked laser[J]. Applied Optics, 58, 2138-2145(2019).
[68] Li B H, Jin W, Wu L et al. Reaching fiber-laser coherence in integrated photonics[J]. Optics Letters, 46, 5201-5204(2021).
[69] Yacoby E, Goren C, Goldring S et al. Discretely tunable, single mode lasing from a multimode diode laser, locked to silica microsphere resonator[J]. Optics & Laser Technology, 143, 107343(2021).
[70] Kondratiev N M, Lobanov V E, Cherenkov A V et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 25, 28167-28178(2017).
[71] Galiev R R, Kondratiev N M, Lobanov V E et al. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator[J]. Physical Review Applied, 14, 014036(2020).
[72] Li J C, Zhang B Y, Yang S G et al. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 9, 558-566(2021).
[73] Galiev R R, Kondratiev N M, Lobanov V E et al. Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator[J]. Physical Review Applied, 16, 064043(2021).
[74] Mo S P, Huang X, Xu S H et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 39, 5818-5821(2014).
[75] Cowle G J, Stepanov D Y. Hybrid Brillouin/erbium fiber laser[J]. Optics Letters, 21, 1250-1252(1996).
[76] Pavlov N G, Koptyaev S, Lihachev G V et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 12, 694-698(2018).
[77] Savchenkov A A, Chiow S W, Ghasemkhani M et al. Self-injection locking efficiency of a UV Fabry-Perot laser diode[J]. Optics Letters, 44, 4175-4178(2019).
[78] Donvalkar P S, Savchenkov A, Matsko A. Self-injection locked blue laser[J]. Journal of Optics, 20, 045801(2018).
[79] Xie Z D, Liang W, Savchenkov A A et al. Extended ultrahigh-Q-cavity diode laser[J]. Optics Letters, 40, 2596-2599(2015).
[80] Dale E, Bagheri M, Matsko A B et al. Microresonator stabilized 2 μm distributed-feedback GaSb-based diode laser[J]. Optics Letters, 41, 5559-5562(2016).
[81] Shim E, Gil-Molina A, Westreich O et al. Tunable single-mode chip-scale mid-infrared laser[J]. Communications Physics, 4, 268(2021).
[82] Shitikov A E, Benderov O V, Kondratiev N M et al. Microresonator and laser parameter definition via self-injection locking[J]. Physical Review Applied, 14, 064047(2020).
[83] Savchenkov A, Williams S, Matsko A. On stiffness of optical self-injection locking[J]. Photonics, 5, 43(2018).
[84] Qian S X, Chang R K. Multiorder stokes emission from micrometer-size droplets[J]. Physical Review Letters, 56, 926-929(1986).
[85] Li M, Zou C L, Dong C H et al. Enhancement of second-harmonic generation based on the cascaded second- and third-order nonlinear processes in a multimode optical microcavity[J]. Physical Review A, 98, 013854(2018).
[86] Agha I H, Okawachi Y, Foster M A et al. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres[J]. Physical Review A, 76, 043837(2007).
[87] Gu J X, Liu J, Bai Z Q et al. Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip[J]. Photonics Research, 722-725(2021).
[88] Shitikov A E, Bilenko I A, Kondratiev N M et al. Billion Q-factor in silicon WGM resonators[J]. Optica, 5, 1525-1528(2018).
[89] Qin Y C, Ding S L, Zhang M H et al. High-power, low-noise Brillouin laser on a silicon chip[J]. Optics Letters, 47, 1638-1641(2022).
[90] Wang C, Zhang M, Yu M J et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019).
[91] Liu X W, Sun C Z, Xiong B et al. Integrated continuous-wave aluminum nitride Raman laser[J]. Optica, 4, 893-896(2017).
[92] Del’Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).
[93] Papp S B, Beha K, Del’Haye P et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-14(2014).
[94] Yu M J, Okawachi Y, Griffith A G et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).
[95] Yu M J, Okawachi Y, Griffith A G et al. Microresonator-based high-resolution gas spectroscopy[J]. Optics Letters, 42, 4442-4445(2017).
[96] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).
[97] Fülöp A, Mazur M, Lorences-Riesgo A et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators[J]. Nature Communications, 9, 1598(2018).
[98] Lucas E, Karpov M, Guo H et al. Breathing dissipative solitons in optical microresonators[J]. Nature Communications, 8, 736(2017).
[99] Hu Y, Ding S L, Qin Y C et al. Generation of optical frequency comb via giant optomechanical oscillation[J]. Physical Review Letters, 127, 134301(2021).
[100] Jiang S S, Guo C L, Fu H Y et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system[J]. Optics Express, 28, 38304-38316(2020).
[101] Suh M G, Vahala K. Gigahertz-repetition-rate soliton microcombs[J]. Optica, 5, 65-66(2018).
[102] Razzari L, Duchesne D, Ferrera M et al. CMOS-compatible integrated optical hyper-parametric oscillator[J]. Nature Photonics, 4, 41-45(2010).
[103] Xiang C, Liu J Q, Guo J et al. Laser soliton microcombs heterogeneously integrated on silicon[J]. Science, 373, 99-103(2021).
[104] Jung H, Stoll R, Guo X et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396-399(2014).
[105] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).
[106] Pu M H, Ottaviano L, Semenova E et al. Efficient frequency comb generation in AlGaAs-on-insulator[J]. Optica, 3, 823-826(2016).
[107] Wilson D J, Schneider K, Hönl S et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photonics, 14, 57-62(2020).
[108] Hausmann B J M, Bulu I, Venkataraman V et al. Diamond nonlinear photonics[J]. Nature Photonics, 8, 369-374(2014).
[109] Liu J Q, Raja A S, Karpov M et al. Ultralow-power chip-based soliton microcombs for photonic integration[J]. Optica, 5, 1347-1353(2018).
[110] Yi X, Yang Q F, Yang K Y et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015).
[111] Griffith A G, Lau R K W, Cardenas J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 6299(2015).
[112] Liu X W, Gong Z, Bruch A W et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing[J]. Nature Communications, 12, 5428(2021).
[113] Chang L, Xie W Q, Shu H W et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).
[114] Kues M, Reimer C, Lukens J M et al. Quantum optical microcombs[J]. Nature Photonics, 13, 170-179(2019).
[115] Förtsch M, Fürst J U, Wittmann C et al. A versatile source of single photons for quantum information processing[J]. Nature Communications, 4, 1818(2013).
[116] Jaramillo-Villegas J A, Imany P, Odele O D et al. Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb[J]. Optica, 4, 655-658(2017).
[117] Kues M, Reimer C, Roztocki P et al. On-chip generation of high-dimensional entangled quantum states and their coherent control[J]. Nature, 546, 622-626(2017).
[118] Yang Z J, Jahanbozorgi M, Jeong D et al. A squeezed quantum microcomb on a chip[J]. Nature Communications, 12, 4781(2021).
[119] Guidry M A, Lukin D M, Yang K Y et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).
[120] Seibold K, Rota R, Minganti F et al. Quantum dynamics of dissipative kerr solitons[J]. Physical Review A, 105, 053530(2022).
[121] Del’Haye P, Beha K, Papp S B et al. Self-injection locking and phase-locked states in microresonator-based optical frequency combs[J]. Physical Review Letters, 112, 043905(2014).
[122] Galiev R R, Pavlov N G, Kondratiev N M et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators[J]. Optics Express, 26, 30509-20522(2018).
[123] Voloshin A S, Kondratiev N M, Lihachev G V et al. Dynamics of soliton self-injection locking in optical microresonators[J]. Nature Communications, 12, 235(2021).
[124] Suh M G, Wang C Y, Johnson C et al. Directly pumped 10 GHz microcomb modules from low-power diode lasers[J]. Optics Letters, 44, 1841-1843(2019).
[125] Shitikov A E, Lobanov V E, Kondratiev N M et al. Self-injection locking of a gain-switched laser diode[J]. Physical Review Applied, 15, 064066(2021).
[126] Raja A S, Voloshin A S, Guo H R et al. Electrically pumped photonic integrated soliton microcomb[J]. Nature Communications, 10, 680(2019).
[127] Shen B Q, Chang L, Liu J Q et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).
[128] Shen Y, Meng L J, Wang M Y et al. Dispersion engineering of magnesium fluoride wedge resonator and numerical analysis for soliton generation[J]. Acta Optica Sinica, 41, 0323001(2021).
[129] Liang W, Savchenkov A A, Ilchenko V S et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD[J]. Optics Letters, 39, 2920-2923(2014).
[130] Lihachev G, Weng W L, Liu J Q et al. Platicon microcomb generation using laser self-injection locking[J]. Nature Communications, 13, 1771(2022).
Get Citation
Copy Citation Text
Xia Yu, Xu Chen, Jingmin Liu, Jiahao Luo. Laser Self-Injection Locking Technique Based on Whispering Gallery Mode Resonator[J]. Chinese Journal of Lasers, 2022, 49(19): 1901001
Category: laser devices and laser physics
Received: May. 19, 2022
Accepted: Jul. 4, 2022
Published Online: Sep. 20, 2022
The Author Email: Yu Xia (xiayu@buaa.edu.cn)